1.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
2.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
3.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
4.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
5.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
6.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
Background/Aims:
Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients.
Methods:
We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development.
Results:
Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients.
Conclusions
Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk.
7.Management of ulcerative colitis in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease updated in 2023
Hsu-Heng YEN ; Jia-Feng WU ; Horng-Yuan WANG ; Ting-An CHANG ; Chung-Hsin CHANG ; Chen-Wang CHANG ; Te-Hsin CHAO ; Jen-Wei CHOU ; Yenn-Hwei CHOU ; Chiao-Hsiung CHUANG ; Wen-Hung HSU ; Tzu-Chi HSU ; Tien-Yu HUANG ; Tsung-I HUNG ; Puo-Hsien LE ; Chun-Che LIN ; Chun-Chi LIN ; Ching-Pin LIN ; Jen-Kou LIN ; Wei-Chen LIN ; Yen-Hsuan NI ; Ming-Jium SHIEH ; I-Lun SHIH ; Chia-Tung SHUN ; Tzung-Jiun TSAI ; Cheng-Yi WANG ; Meng-Tzu WENG ; Jau-Min WONG ; Deng-Chyang WU ; Shu-Chen WEI
Intestinal Research 2024;22(3):213-249
Ulcerative colitis (UC) is a chronic inflammation of the gastrointestinal tract and is characterized by alternating periods of inflammation and remission. Although UC incidence is lower in Taiwan than in Western countries, its impact remains considerable, demanding updated guidelines for addressing local healthcare challenges and patient needs. The revised guidelines employ international standards and recent research, emphasizing practical implementation within the Taiwanese healthcare system. Since the inception of the guidelines in 2017, the Taiwan Society of Inflammatory Bowel Disease has acknowledged the need for ongoing revisions to incorporate emerging therapeutic options and evolving disease management practices. This updated guideline aims to align UC management with local contexts, ensuring comprehensive and context-specific recommendations, thereby raising the standard of care for UC patients in Taiwan. By adapting and optimizing international protocols for local relevance, these efforts seek to enhance health outcomes for patients with UC.
8.Management of Crohn’s disease in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease updated in 2023
Jia-Feng WU ; Hsu-Heng YEN ; Horng-Yuan WANG ; Ting-An CHANG ; Chung-Hsin CHANG ; Chen-Wang CHANG ; Te-Hsin CHAO ; Jen-Wei CHOU ; Yenn-Hwei CHOU ; Chiao-Hsiung CHUANG ; Wen-Hung HSU ; Tzu-Chi HSU ; Tien-Yu HUANG ; Tsung-I HUNG ; Puo-Hsien LE ; Chun-Che LIN ; Chun-Chi LIN ; Ching-Pin LIN ; Jen-Kou LIN ; Wei-Chen LIN ; Yen-Hsuan NI ; Ming-Jium SHIEH ; I-Lun SHIH ; Chia-Tung SHUN ; Tzung-Jiun TSAI ; Cheng-Yi WANG ; Meng-Tzu WENG ; Jau-Min WONG ; Deng-Chyang WU ; Shu-Chen WEI
Intestinal Research 2024;22(3):250-285
Crohn’s disease (CD) is a chronic, fluctuating inflammatory condition that primarily affects the gastrointestinal tract. Although the incidence of CD in Taiwan is lower than that in Western countries, the severity of CD presentation appears to be similar between Asia and the West. This observation indicates the urgency for devising revised guidelines tailored to the unique reimbursement system, and patient requirements in Taiwan. The core objectives of these updated guidelines include the updated treatment choices and the integration of the treat-to-target strategy into CD management, promoting the achievement of deep remission to mitigate complications and enhance the overall quality of life. Given the diversity in disease prevalence, severity, insurance policies, and access to medical treatments in Taiwan, a customized approach is imperative for formulating these guidelines. Such tailored strategies ensure that international standards are not only adapted but also optimized to local contexts. Since the inception of its initial guidelines in 2017, the Taiwan Society of Inflammatory Bowel Disease (TSIBD) has acknowledged the importance of continuous revisions for incorporating new therapeutic options and evolving disease management practices. The latest update leverages international standards and recent research findings focused on practical implementation within the Taiwanese healthcare system.
9.Asia-Pacific consensus on long-term and sequential therapy for osteoporosis
Ta-Wei TAI ; Hsuan-Yu CHEN ; Chien-An SHIH ; Chun-Feng HUANG ; Eugene MCCLOSKEY ; Joon-Kiong LEE ; Swan Sim YEAP ; Ching-Lung CHEUNG ; Natthinee CHARATCHAROENWITTHAYA ; Unnop JAISAMRARN ; Vilai KUPTNIRATSAIKUL ; Rong-Sen YANG ; Sung-Yen LIN ; Akira TAGUCHI ; Satoshi MORI ; Julie LI-YU ; Seng Bin ANG ; Ding-Cheng CHAN ; Wai Sin CHAN ; Hou NG ; Jung-Fu CHEN ; Shih-Te TU ; Hai-Hua CHUANG ; Yin-Fan CHANG ; Fang-Ping CHEN ; Keh-Sung TSAI ; Peter R. EBELING ; Fernando MARIN ; Francisco Javier Nistal RODRÍGUEZ ; Huipeng SHI ; Kyu Ri HWANG ; Kwang-Kyoun KIM ; Yoon-Sok CHUNG ; Ian R. REID ; Manju CHANDRAN ; Serge FERRARI ; E Michael LEWIECKI ; Fen Lee HEW ; Lan T. HO-PHAM ; Tuan Van NGUYEN ; Van Hy NGUYEN ; Sarath LEKAMWASAM ; Dipendra PANDEY ; Sanjay BHADADA ; Chung-Hwan CHEN ; Jawl-Shan HWANG ; Chih-Hsing WU
Osteoporosis and Sarcopenia 2024;10(1):3-10
Objectives:
This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach.
Methods:
A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches.
Results:
The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment.
Conclusions
This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management.
10.Clinical Characteristics, Genetic Features, and Long-Term Outcome of Wilson’s Disease in a Taiwanese Population: An 11-Year Follow-Up Study
Sung-Pin FAN ; Yih-Chih KUO ; Ni-Chung LEE ; Yin-Hsiu CHIEN ; Wuh-Liang HWU ; Yu-Hsuan HUANG ; Han-I LIN ; Tai-Chung TSENG ; Tung-Hung SU ; Shiou-Ru TZENG ; Chien-Ting HSU ; Huey-Ling CHEN ; Chin-Hsien LIN ; Yen-Hsuan NI
Journal of Movement Disorders 2023;16(2):168-179
Objective:
aaWilson’s disease (WD) is a rare genetic disorder of copper metabolism, and longitudinal follow-up studies are limited. We performed a retrospective analysis to determine the clinical characteristics and long-term outcomes in a large WD cohort.
Methods:
aaMedical records of WD patients diagnosed from 2006–2021 at National Taiwan University Hospital were retrospectively evaluated for clinical presentations, neuroimages, genetic information, and follow-up outcomes.
Results:
aaThe present study enrolled 123 WD patients (mean follow-up: 11.12 ± 7.41 years), including 74 patients (60.2%) with hepatic features and 49 patients (39.8%) with predominantly neuropsychiatric symptoms. Compared to the hepatic group, the neuropsychiatric group exhibited more Kayser-Fleischer rings (77.6% vs. 41.9%, p < 0.01), lower serum ceruloplasmin levels (4.9 ± 3.9 vs. 6.3 ± 3.9 mg/dL, p < 0.01), smaller total brain and subcortical gray matter volumes (p < 0.0001), and worse functional outcomes during follow-up (p = 0.0003). Among patients with available DNA samples (n = 59), the most common mutations were p.R778L (allelic frequency of 22.03%) followed by p.P992L (11.86%) and p.T935M (9.32%). Patients with at least one allele of p.R778L had a younger onset age (p = 0.04), lower ceruloplasmin levels (p < 0.01), lower serum copper levels (p = 0.03), higher percentage of the hepatic form (p = 0.03), and a better functional outcome during follow-up (p = 0.0012) compared to patients with other genetic variations.
Conclusion
aaThe distinct clinical characteristics and long-term outcomes of patients in our cohort support the ethnic differences regarding the mutational spectrum and clinical presentations in WD.

Result Analysis
Print
Save
E-mail