1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Effects of borneol on pharmacodynamics and pharmacokinetics of Corydalis saxicola total alkaloids in depression model rats
Yu YE ; Guoliang DAI ; Huaxi HANG ; Meishuang YU ; Yiran WANG ; Xuewen SHAO ; Wenzheng JU
China Pharmacy 2025;36(1):30-36
OBJECTIVE To investigate the effects of borneol on pharmacodynamic and pharmacokinetic effects of Corydalis saxicola total alkaloids in depression model rats. METHODS Thirty male SD rats were divided into blank control group, negative control group, positive control group (fluoxetine 10 mg/kg, i.g.), single drug group (C. saxicola total alkaloids 210 mg/kg, i.g.) and combined drug group (C. saxicola total alkaloids 210 mg/kg+borneol 50 mg/kg, i.g.) according to the random number table method, with 6 rats in each group. By lipopolysaccharide (LPS) induction modeling, except blank control group (no model and no administration) received intraperitoneal injection of the same amount of normal saline, the rats in the other groups were intraperitoneally injected with LPS once a day to establish a rat model of depression. After 1 week of modeling, each administration group was given relevant drug intragastrically according to the corresponding dose, and blank control group and negative control group (without drug treatment) were administered intragastrically with an equal volume of solvent to dissolve the drug; continued modeling while administering the drug. After two weeks of continuous administration, the effects of C. saxicola total alkaloids versus the combination of C. saxicola total alkaloids and borneol on the behavior of depressed rats were tested by behavioral experiments; the levels of tumor necrosis factor-α, interleukin-1β and interleukin-6 in rats were determined; the histopathological changes of the hippocampus of rats were observed. Blood sample was collected from the orbit at different time points after administration on the 15th day, and the upper plasma was obtained. Ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry was established for the simultaneous determination of dehydrocarvedine, tetrahydropalmatine, coptisine, palmatine, jatrorrhizine, berberine, berberrubine and epiberberine in rat plasma. The average plasma concentration-time curve was depicted, the area under the curve (AUC) was calculated, and the pharmacokinetic parameters were analyzed by DAS 3.2.2 software. RESULTS Compared with blank control group, the negative control group had a decrease in body mass and sugar water preference rate, a decrease in the total distance of open field, a prolonged swimming immobility time, and a increased in the expression of inflammatory factors in serum (P<0.05); compared with negative control group, the single drug group and the combined drug group increased the preference rate of sugar water, increased the total distance of open field, shortened the time of swimming immobility, and decreased the expression of inflammatory factors in serum (P<0.05). There was no significant difference in the above indicators between the single drug group and the combined drug group in rats (P>0.05). Pharmacokinetic results showed that compared with single drug group, AUC0-t of coptisine, AUC0-t, AUC0-∞, tmax and cmax of jatrorrhizine, AUC0-t, AUC0-∞, t1/2 and cmax of berberrubine, and AUC0-t of epiberberine, cmax of dehydrocarvedine, cmax of palmatine were significantly increased in combined drug group, but there was no significant difference, indicating that borneol didn’t have a significant effect on the efficacy of Corydalis saxicola nigra at this dose. CONCLUSIONS Both C. saxicola total alkaloids alone and in combination with borneol can improve depression-like behavior in depression model rats, reduce serum inflammatory cytokine levels, and protect hippocampal neurons. Compared with the use of Corydalis saxicola base alone, the combination with borneol do not show significant pharmacodynamic differences, bu can improve the absorption of coptisine, jatrorrhizine in model rats.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Chlorhexidine and Fondaparinux-Induced Kounis Syndrome: a Case Report
Fangzheng YU ; Yajing WANG ; Hang LIN ; Lifeng ZHANG ; Yuhui ZHU ; Xiaomeng SHI ; Huimin ZHOU ; Nan LIN ; Xiang GAO
JOURNAL OF RARE DISEASES 2025;4(3):334-340
Kounis syndrome is an acute coronary syndrome triggered by an allergic reaction, which is clinically rare and frequently subject to misdiagnosis or missed diagnosis. This article presents a case report of a 70-year-old male patient who developed a rash, pruritus, and chest pain following colon polyp resection. Coronary angiography revealed occlusion of the left anterior descending artery, and blood flow was restored after stent implantation. However, the patient experienced recurrent symptoms accompanied by loss of consciousness. Drug skin tests confirmed positive reactions to chlorhexidine and fondaparinux sodium, leading to a diagnosis of type Ⅱ Kounis syndrome. By avoiding allergenic drugs and combining antihistamines with symptomatic treatment to correct myocardial ischemia, the patient′s clinical symptoms significantly improved, and he eventually recovered and was discharged from the hospital. This case underscores the importance of maintaining vigilance for this syndrome in patients with allergies accompanied by chest pain and promptly identifying and avoiding allergens.
7. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
8.Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang YI ; Wenzhe LI ; Kefang LIU ; Heng XUE ; Rong YU ; Meng ZHANG ; Yang-Oujie BAO ; Xinyuan LAI ; Jingjing FAN ; Yuxi HUANG ; Jing WANG ; Xiaomeng SHI ; Junhua LI ; Hongping WEI ; Kuanhui XIANG ; Linjie LI ; Rong ZHANG ; Xin ZHAO ; Xue QIAO ; Hang YANG ; Min YE
Journal of Pharmaceutical Analysis 2024;14(1):115-127
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016 pM.The mechanism was related to binding with Y453 of RBD deter-mined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quan-tum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)path-ways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
9.In Situ Labeling of Erythrocyte Membrane Anion Channel Proteins with Gold Nanoparticles Observed by Cryo-Scanning Electron Microscopy
Si-Hang CHENG ; Hui-Li WANG ; Yang YU ; Jin-Rui ZHANG ; Hong-Da WANG
Chinese Journal of Analytical Chemistry 2024;52(1):54-61
Band 3 protein is an important channel protein in the erythrocyte membrane which mediates the anion transport process inside and outside the cell membrane,as well as contributes to the maintenance of erythrocyte morphology,and has important physiological functions.However,the distribution state of this protein in the primary cell membrane is not known.Cryo-scanning electron microscopy enables imaging of the surface morphology of biological samples in a near-physiological state.In order to investigate the distribution of band 3 protein on erythrocyte membranes under physiological conditions,the present study utilized 5-nm gold nanoparticles modified with the antibodies to specifically bind to the band 3 protein on human blood erythrocyte membranes and imaged them by cryo-scanning electron microscopy,to obtain distribution of band 3 protein on human blood erythrocyte membranes.The results showed that the membrane proteins on the erythrocyte membranes tended to be clustered and distributed to form ″protein islands″,and band 3 proteins were mainly distributed in these protein islands,which were tightly connected with each other to form several functional microregions to play their respective roles.
10.Effect of Borneol on Pharmacodynamics,Pharmacokinetics and Brain Tissue Distribution of Main Active Ingredients of Jiaotaiwan in Depression Model Rats
Meishuang YU ; Guoliang DAI ; Huaxi HANG ; Yu YE ; Yiran WANG ; Xuewen SHAO ; Wenzheng JU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):18-27
ObjectiveTo investigate the pharmacodynamics, pharmacokinetics and brain distribution of seven main components of Jiaotaiwan alone and Jiaotaiwan combined with borneol in lipopolysaccharide(LPS)-induced depression rats. MethodRats were randomly divided into the control group, model group, fluoxetine group(10 mg·kg-1), Jiaotaiwan group(1.5 g·kg-1) and combination group(1.5 g·kg-1 of Jiaotaiwan+0.05 g·kg-1 of borneol), with 8 rats in each group. Except for the control group, the depression model was established by intraperitoneal injection of LPS for 7 consecutive days, and each group was given the corresponding drugs or the same volume of pure water by gavage for 14 consecutive days. The behavioral indicators and levels of serum inflammatory factors[interleukin-1β(IL-1β), IL-6 and tumor necrosis factor-α(TNF-α)] of rats in each group were compared. The morphological changes of hippocampal neurons were observed by hematoxylin-eosin(HE) and Nissl staining. After the behavioral tests of sucrose preference, open field and forced swimming were completed, blood samples were collected from Jiaotaiwan group and combination group at the set time points after gavage, the contents of seven components in plasma were determined by ultra performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS), and the pharmacokinetic parameters of each component were analyzed by DAS 3.2.2. Brains were rapidly removed on ice after blood collection was completed, and UPLC-QqQ-MS/MS was used to compare the content changes of the 7 components in brain tissue. ResultCompared with the control group, rats in the model group showed decreased sucrose preference rate and total distance of open field, prolonged swimming immobility time, and increased expression of inflammatory factors in serum(P<0.01). Compared with the model group, the sucrose preference rate and total distance of open field were increased, and the swimming immobility time was shortened in the rats of each administration group, and the expression of inflammatory factors in serum was decreased in rats from Jiaotaiwan group and combination group(P<0.05, P<0.01). The results of HE and Nissl staining showed that Jiaotaiwan group and combination group had a certain protective effect on hippocampal neurons. The pharmacokinetic results showed that compared with Jiaotaiwan group, the area under the curve(AUC0-t, AUC0-∞), peak concentration(Cmax) and the average steady-state plasma concentration(Cav) of berberine and epiberberine in the combination group were increased(P<0.05, P<0.01), AUC0-t, AUC0-∞, mean residence time(MRT0-∞) and Cav of coptisine were significantly increased(P<0.05, P<0.01), Cmax of jatrorrhizine increased significantly(P<0.05), but the pharmacokinetic changes of the seven alkaloids were consistent. The results of brain tissue distribution showed that compared with Jiaotaiwan group, the contents of jatrorrhizine, epiberberine, coptisine, palmatine and berberine in the brain tissue of combination group were increased(P<0.05, P<0.01), the content of magnoflorine increased and that of berberrubine decreased, but the difference was not statistically significant. ConclusionJiaotaiwan alone or combined with borneol can improve the depression-like behavior of rats, reduce the levels of serum inflammatory factors, improve the pathological damage of hippocampus, and have antidepressant effect. Compared with Jiaotaiwan alone, the combination of Jiaotaiwan and borneol can increase the exposure of multiple active components of Jiaotaiwan in the plasma and brain tissue of rats, improve its bioavailability, promote its absorption, and improve the brain targeting of the drug, which is more conducive to the antidepressant effect of Jiaotaiwan.

Result Analysis
Print
Save
E-mail