1.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
4.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
5.Early results and indications of Stand-alone oblique lateral interbody fusion in lumbar lesions.
Zhong-You ZENG ; Xing ZHAO ; Wei YU ; Yong-Xing SONG ; Shun-Wu FAN ; Xiang-Qian FANG ; Fei PEI ; Shi-Yang FAN ; Guo-Hao SONG
China Journal of Orthopaedics and Traumatology 2025;38(5):454-464
OBJECTIVE:
To summarize the early clinical results and safety of Stand-alone OLIF application of lumbar lesions, and explored its surgical indications.
METHODS:
Total of 92 cases of lumbar spine lesions treated with Stand-alone OLIF at two medical centers from October 2014 to December 2018 were retrospectively analyzed, including 30 males and 62 females with an average age of (61.20±12.94) years old ranged from 32 to 83 years old. There were 20 cases of lumbar spinal stenosis, 15 cases of lumbar disc degeneration, 11 cases of lumbar degenerative spondylolisthesis, 6 cases of discogenic low back pain, 7 cases of giant lumbar disc herniation, 13 cases of primary lumbar discitis, 6 cases of adjacent vertebral disease after lumbar internal fixation surgery, and 14 cases of degenerative lumbar scoliosis. Pre-operative dual energy X-ray bone density examination 31 cases' T-values ranged from -1 to -2.4, 8 cases' T-values ranged from -2.5 to -3.5, and the rest had normal bone density. The number of fusion segments: 68 cases of single segment, 9 cases of two segment, 12 cases of three segment , and 3 cases of four segment. Fusion site:L1,2 1 case, L2,3 4 cases, L3,4 10 cases, L4,5 53 cases, L2,3-L3,4 3 cases, L3,4-L4,5 6 cases, L1,2L2,3L3,4 1 case, L1,2L3,4L4,5 1 case, L2,3L3,4L4,5 10 cases, L1,2L2,3L3,4L4,5 3 cases. The clinical results and imaging results of this group of cases were observed, as well as the complications.
RESULTS:
The surgical time ranged from 40 to 140 minutes with an average of (60.92±27.40) minutes. The intraoperative bleeding volume was 20 to 720 ml with an average of (68.22±141.60) ml. The patients had a follow-up period of 6 to 84 months with an average of (38.50±12.75) months. The height of the intervertebral space recovered from (9.23±1.94) mm in preoperative to (12.68±2.01) mm in postoperative, and (9.11±1.72) mm at the last follow-up, there was a statistically significant difference(F=6.641, P=0.008);there was also a statistically significant difference between the postoperative and preoperative height of the intervertebral space(t=9.27, P<0.000 1);and there was also a statistically significant difference (t=10.06, P<0.000 1) between the last follow-up and postoperative height of the intervertebral space. At the last follow-up, cage subsidence grading was as follows:level 0 in 69 cases (76 segments), levelⅠin 17 cases (43 segments), level Ⅱin 5 cases (14 segments), and level Ⅲ in 1 case (1 segment);according to the number of segments, normal subsidence accounts for 56.72%, abnormal subsidence accounts for 43.28%. Bone mineral desity of normal subsidence groups was -0.50±0.07 whinch was better than that the abnormal subsidence groups -2.10±0.43, and the difference was statistically significant(χ2=2.275, P=0.014). As well as there was a statistically significant difference in the patient's VAS of backache from (6.28±2.11) in preoperative to (1.48±0.59) in last follow-up(t=8.56, P<0.05). The ODI recovered from (36.30±7.52)% before surgery to (10.20±2.50)% at the last follow-up, with a statistically significant difference (t=7.79, P<0.000 1). Complications involved 4 cases of intraoperative vascular injury, 21 cases of endplate injury, and 4 cases of combined vertebral fractures. The incision skin has no necrosis or infection. There were 4 cases of left sympathetic chain injury, 4 cases of transient left hip flexion weakness, 2 cases of left thigh anterolateral numbness with quadriceps femoris weakness, and 1 case of incomplete intestinal obstruction;8 cases were treated with posterior pedicle screw fixation due to fusion cage settlement accompanied by stubborn lower back pain, and 6 cases were treated with fusion cage settlement and lateral displacement. According to the actual number of cases, there were 38 complications, with an incidence rate of 41.3%.
CONCLUSION
The application of Stand alone OLIF in lumbar spine disease fusion has achieved good early results, with obvious clinical advantages, but also there are high probability of complications. It is recommended to choose carefully. It is necessary to continuously summarize and gradually clarify and complete the surgical indications and specific case selection criteria.
Humans
;
Male
;
Female
;
Middle Aged
;
Spinal Fusion/methods*
;
Lumbar Vertebrae/injuries*
;
Aged
;
Adult
;
Retrospective Studies
;
Aged, 80 and over
6.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
7.Short-Term Efficacy of Low-Dose Venetoclax Combined with CHG Priming Regimen in Patients with AML and High-Risk MDS Ineligible for Intensive Chemotherapy.
Yu-Ze YANG ; Mei ZHOU ; Ya-Ru XU ; Wen-Yan XU ; Jie SUN ; Yuan-Yuan ZHU ; Yuan LI ; Zhen-Xing GUO
Journal of Experimental Hematology 2025;33(3):660-665
OBJECTIVE:
To investigate the short-term efficacy and safety of low-dose venetoclax combined with CHG (cytarabine+homoharringtonine+G-CSF) priming regimen in patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy.
METHODS:
The data of 14 patients with AML or high-risk MDS admitted to the department of hematology/oncology of the First Hospital of Tsinghua University and 2 cooperative institutions from July 2022 to August 2023 were retrospectively analyzed. All the patients were treated with low-dose venetoclax combined with CHG priming regimen and the early induction (one course) efficacy and adverse reactions were observed.
RESULTS:
Among the 14 patients, 10 were males and 4 were females, with a median age of 69.5 (46-83) years. After 1 cycle of induction chemotherapy, the complete remission (CR) rate was 64.3% (9/14) and overall response rate (ORR) was 78.6% (11/14). Among the 10 patients with adverse prognosis according to cytogenetics and molecular genetics, the CR rate was 50.0% (5/10), and ORR was 70.0% (7/10). In 7 patients with TP53 mutation, the CR rate was 42.9% (3/7) and ORR was 71.4% (5/7). In the 6 patients with complex karyotype, CR rate was 33.3% (2/6) and ORR was 66.7% (4/6). While the CR rate and ORR of 8 non-complex karyotype patients were both 87.5% (7/8), and the difference in CR rate between patients with complex karyotype and non-complex karyotype was statistically significant ( P < 0.05). The adverse reactions of chemotherapy were tolerable, without early treatment-related deaths.
CONCLUSION
Low-dose venetoclax combined with CHG priming regimen can be used as an effective treatment for AML and high-risk MDS patients who are ineligible for intensive chemotherapy, and it is safe and worthy of clinical application.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Aged
;
Male
;
Female
;
Sulfonamides/therapeutic use*
;
Middle Aged
;
Myelodysplastic Syndromes/drug therapy*
;
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use*
;
Aged, 80 and over
;
Retrospective Studies
;
Cytarabine/administration & dosage*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Homoharringtonine/therapeutic use*
8.Curative Efficacy Analysis of Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia with ASXL1 Mutation.
Ya-Jie SHI ; Xin-Sheng XIE ; Zhong-Xing JIANG ; Ding-Ming WAN ; Rong GUO ; Tao LI ; Xia ZHANG ; Xue LI ; Yu-Pei ZHANG ; Yue SU
Journal of Experimental Hematology 2025;33(3):720-725
OBJECTIVE:
To explore the efficacy and apoptosis of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of acute myeloid leukemia (AML) with ASXL1 mutation.
METHODS:
The clinical data of 80 AML patients with ASXL1 mutation treated in our hospital from January 2019 to December 2021 were retrospectively analyzed. The clinical characteristics of the patients were summarized, and the therapeutic effect and prognostic factors of allo-HSCT for the patients were analyzed.
RESULTS:
Among the 80 patients, 38 were males and 42 were females, and the median age was 39(14-65) years. There were 17 patients in low-risk group, 25 patients in medium-risk group and 38 patients in high-risk group. ASXL1 mutation co-occurred with many other gene mutations, and the frequent mutated genes were TET2 (71.25%), NRAS (18.75%), DNMT3A (16.25%), NPM1 (15.00%), CEBPA (13.75%). Among medium and high-risk patients, 29 underwent allo-HSCT, while 34 received chemotherapy. The 2-year overall survival (OS) rate and disease-free survival (DFS) rate of the allo-HSCT group were 72.4% and 70.2%, while those of the chemotherapy group were 44.1% and 34.0%, respectively. The statistical analysis showed significant differences between the two groups (both P < 0.01). Multivariate analysis showed that age at transplantation >50- years and occurrence of acute graft-versus-host disease after transplantation were poor prognostic factors for OS and DFS in transplantation patients.
CONCLUSION
Allo-HSCT can improve the prognosis of AML patients with ASXL1 mutation.
Humans
;
Leukemia, Myeloid, Acute/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Middle Aged
;
Mutation
;
Adult
;
Repressor Proteins/genetics*
;
Adolescent
;
Retrospective Studies
;
Aged
;
Nucleophosmin
;
Young Adult
;
Transplantation, Homologous
;
Prognosis
;
Survival Rate
9.Significance of Serum β2-Microglobulin for Survival and Relapse of Patients with Diffuse Large B-Cell Lymphoma in the Rituximab Era.
Yu-Ze YANG ; Ya-Ru XU ; Mei ZHOU ; Wen-Yan XU ; Li-Qiang ZHOU ; Zhen-Xing GUO
Journal of Experimental Hematology 2025;33(4):1057-1062
OBJECTIVE:
To investigate the significance of serum β2-microglobulin (β2-MG) for survival and relapse of patients with diffuse large B-cell lymphoma (DLBCL) in the rituximab era.
METHODS:
Clinical data of 92 patients with DLBCL admitted from December 2003 to July 2015 were retrospectively analyzed. The optimal cutoff value of β2-MG levels for predicting prognosis of the DLBCL patients was determined using receiver operating characteristic (ROC) curve. KaplanMeier analysis was used to estimate progression-free survival (PFS) and overall survival (OS). Cox logistic regression analysis was used to explore potential prognostic factors associated with survival. Binary logistic regression analysis was used to analyze the relationship between various factors and relapse.
RESULTS:
The most discriminative cutoff value for β2-MG level was determined to be 2.25 mg/L by the ROC curve. Subgroup analysis showed that patients in the elevated β2-MG (>2.25 mg/L) group had significantly worse PFS(P =0.006) and a trend toward worse OS compared with those in the low β2-MG (≤2.25 mg/L) group(P =0.053). Univariate analysis showed that elevated β2-MG, age>60 years, Ann Arbor stage III-IV, as well as IPI score ≥3 were associated with worse PFS. Binary logistic regression analysis showed that age>60 years and β2-MG>2.25 mg/L were potential influencing factors for relapse of DLBCL patients.
CONCLUSION
Serum β 2-MG might be an important predictor for the survival and relapse of DLBCL patients in the rituximab era.
Humans
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
beta 2-Microglobulin/blood*
;
Rituximab
;
Retrospective Studies
;
Prognosis
;
Female
;
Male
;
Middle Aged
;
Recurrence
;
ROC Curve
10.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269

Result Analysis
Print
Save
E-mail