1.Effect of Estrogen Replacement on Vascular Responsiveness in Ovariectomized Spontaneously Hypertensive Rat.
Bonggwan SEO ; Dong Ju CHOI ; Jin Yong HWANG ; Il Seok CHEON ; Yu Pan LEE
Korean Circulation Journal 2000;30(4):528-528
BACKGROUND: Although postmenopausal estrogen replacement therapy is known to reduce cardiovascular mortality, the mechanism is not clear yet. Furthermore, the effect of estrogen on vascular tonus is reportedly variable according to the animal models, vascular beds and agonists used. MATERIALS AND METHOD: Bilateral ovariectomies were performed in 12 week-old, 18 spontaneously hypertensive rats (SHR) and 18 normotensive Wistar-Kyoto rats (WKY). Rats were divided into three groups according to the dose of 17beta-estradiol (E 2 ) pellets implanted subcutaneously two weeks after ovariectomy: control (no implantation), low-dose (0.5 mg) and high-dose (5 mg) E 2 replacement group. Two weeks after pellet implantation, organ bath experiments were performed using descending thoracic aortae. For endothelium-dependent relaxation, acetylcholine (10(-9) -3x10(-6) M) was cumulatively added into the vessels precontracted with 10(-7) M norepinephrine (NE). For vasoconstrictor responses, cumulative concentration-contraction curves were constructed in quiescent vessels using NE (10(-9) -10(-5) M), U46619 (10(-9) -3x10(-6) M), endothelin-1 (10(-10) -10(-7) M). In addition, contraction to angiotensin II (10(-7) M) was also obtained. Serum 17beta-estradiol levels were measured by radioimmunoassay. Blood pressure was measured by tail-cuff method in some SHRs before ovariectomy and after placebo/E 2 replacement. RESULTS: Endothelium-dependent relaxation to acetylcholine was impaired in WKY treated with 5 mg E 2 (pIC 50 : control vs 5mg E 2 : 7.75+/-0.13 vs 7.27+/-0.16: n=6: p<0.05). No significant effect was noted in SHR. Contraction to angiotensin II was inhibited by low-dose E 2 in WKY and high-dose E 2 in SHR (% of the contraction to 60 mM KCl: WKY: control vs 0.5 mg E 2 : 39+/-5 vs 25+/-2: SHR: control vs 5 mg E 2 : 34+/-4 vs 22+/-2: n=6 and p<0.05 in WKY and SHR). In contrast, NE-induced contraction was enhanced by E 2 replacement (both low- and high-dose) in WKY and SHR (WKY: control vs 0.5 mg E 2 vs 5 mg E 2 : AUC: 280+/-24 vs 387+/-26 vs 374+/-25: maximal contraction: 137+/-8 vs 166+/-8 vs 162+/-3: pD 2 : 7.63+/-0.11 vs 8.17+/-0.13 vs 8.13+/-0.13: SHR: control vs 0.5 mg E 2 vs 5 mg E 2 : AUC: 265+/-17 vs 349+/-16 vs 406+/-19: maximal contraction: 152+/-6 vs 181+/-9 vs 203+/-16: pD 2 : 7.45+/-0.13 vs 7.91+/-0.08 vs 8.04+/-0.04: n=6 and p<0.05 between control and treated groups in WKY and SHR for all parameters). Contraction to U46619 was enhanced by E 2 replacement in SHR (control vs 0.5 mg E 2 : AUC: 478+/-30 vs 574+/-23: maximal contraction: 181+/-9 vs 230+/-10: n=6: p<0.05 for both parameters). Maximal contractile response to endothelin-1 was also enhanced in SHR (control vs 0.5 mg E 2 vs 5 mg E 2 : maximal contraction: 165+/-7 vs 189+/-7 vs 199+/-8: n=6 and p<0.05 between control and treated groups) but not in WKY. Blood pressure was not different between placebo and E 2- treated SHR (171+/-2 vs 174+/-4 mmHg). CONCLUSION: In WKY, chronic high-dose estrogen replacement impairs endothelium-dependent relaxation to acetylcholine.: low-dose estrogen replacement does not affect endothelium-dependent relaxation in SHR and WKY. Estrogen replacement enhances the contraction to most of the contractile agonists tested except angiotensin II in both WKY and SHR. These results suggest that estrogen replacement affect the vascular tonus differently according to the vasoactive substances and/or hormones without significant effect on blood pressure.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Acetylcholine
;
Angiotensin II
;
Animals
;
Aorta, Thoracic
;
Area Under Curve
;
Baths
;
Blood Pressure
;
Endothelin-1
;
Estrogen Replacement Therapy*
;
Estrogens*
;
Female
;
Models, Animal
;
Mortality
;
Norepinephrine
;
Ovariectomy
;
Radioimmunoassay
;
Rats
;
Rats, Inbred SHR*
;
Relaxation
2.The Efficacy and Long-Term Outcome of Microcoil Embolotherapy for Acute Lower Gastrointestinal Bleeding.
Hui Chung TENG ; Huei Lung LIANG ; Yih Huie LIN ; Jer Shyung HUANG ; Chiung Yu CHEN ; Shang Chieh LEE ; Huay Ben PAN
Korean Journal of Radiology 2013;14(2):259-268
OBJECTIVE: To evaluate the clinical efficacy as well as long-term clinical outcomes of superselective microcoil embolization for lower gastrointestinal bleeding (LGIB). MATERIALS AND METHODS: Between 1997 and 2009, 26 patients with intended transcatheter embolotherapy for LGIB were retrospectively reviewed. Embolization was performed only when the catheter could be advanced to or distal to the mesenteric border of the bowel. The main purpose of our study was to assess technical success, recurrent bleeding rate and complications. We also evaluated the long-term clinical outcome, including late recurrent LGIB, bowel ischemia and the survival rate. RESULTS: Twenty-two bleeding sources were in the territory of superior mesenteric artery and four in the inferior mesenteric artery. Technical success was achieved in 22 patients (84.6%). The target vessel of embolization was vasa recta in seventeen patients and marginal artery in the remaining five patients. Early rebleeding occurred in two patients (7.7%) and bowel ischemia in two patients, of whom the embolized points were both at the marginal artery. Delayed recurrent bleeding (> 30 days) occurred in two angiodysplasia patients. Five patients (19.2%) died within the first 30 days of intervention. Long-term follow-up depicted estimated survival rates of 58.2 and 43.1% after one, and five years, respectively. CONCLUSION: Transcatheter embolotherapy to treat LGIB is effective with low rebleeding and ischemic complications. Considering the advanced age and complex medical problems of these patients, the minimal invasive embolotherapy may be used as both a primary and potentially definitive treatment of LGIB.
Acute Disease
;
Adult
;
Aged
;
Aged, 80 and over
;
Colonoscopy
;
Embolization, Therapeutic/adverse effects/*methods
;
Endpoint Determination
;
Female
;
Gastrointestinal Hemorrhage/radiography/*therapy
;
Humans
;
Male
;
Middle Aged
;
Recurrence
;
Retrospective Studies
;
Survival Rate
;
Tomography, X-Ray Computed
;
Treatment Outcome
3.Bioinformatics services for analyzing massive genomic datasets
Gunhwan KO ; Pan-Gyu KIM ; Youngbum CHO ; Seongmun JEONG ; Jae-Yoon KIM ; Kyoung Hyoun KIM ; Ho-Yeon LEE ; Jiyeon HAN ; Namhee YU ; Seokjin HAM ; Insoon JANG ; Byunghee KANG ; Sunguk SHIN ; Lian KIM ; Seung-Won LEE ; Dougu NAM ; Jihyun F. KIM ; Namshin KIM ; Seon-Young KIM ; Sanghyuk LEE ; Tae-Young ROH ; Byungwook LEE
Genomics & Informatics 2020;18(1):e8-
The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating downstream analysis of genome data. Bio-Express web service is freely available at https://www.bioexpress.re.kr/.
4.Bioinformatics services for analyzing massive genomic datasets
Gunhwan KO ; Pan-Gyu KIM ; Youngbum CHO ; Seongmun JEONG ; Jae-Yoon KIM ; Kyoung Hyoun KIM ; Ho-Yeon LEE ; Jiyeon HAN ; Namhee YU ; Seokjin HAM ; Insoon JANG ; Byunghee KANG ; Sunguk SHIN ; Lian KIM ; Seung-Won LEE ; Dougu NAM ; Jihyun F. KIM ; Namshin KIM ; Seon-Young KIM ; Sanghyuk LEE ; Tae-Young ROH ; Byungwook LEE
Genomics & Informatics 2020;18(1):e8-
The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating downstream analysis of genome data. Bio-Express web service is freely available at https://www.bioexpress.re.kr/.