1.Neuronal signaling in central nervous system.
Acta Physiologica Sinica 2011;63(1):1-8
A new method of axon recording through axon bleb has boosted the studies on the functional role of central nervous system (CNS) axons. Using this method, we have revealed the mechanisms underlying the initiation and propagation of the digital-mode signal, all-or-none action potentials (APs), in neocortical pyramidal neurons. Accumulation of the low-threshold Na(+) channel subtype Na(v)1.6 at the distal end of the axon initial segment (AIS) determines the lowest threshold for AP initiation, whereas accumulation of the high-threshold subtype Na(v)1.2 at the proximal region of the AIS promotes AP backpropagation to the soma and dendrites. Through dual recording from the soma and the axon, we have showed that subthreshold membrane potential (V(m)) fluctuations in the soma propagate along the axon to a long distance and probably reach the axon terminals. Paired recording from cortical neurons has revealed that these V(m) changes in the soma modulate AP-triggered synaptic transmission. This new V(m)-dependent mode of synaptic transmission is called analog communication. Unique properties of axonal K(+) channels (K(v)1 channels) may contribute to shaping the AP waveform, particularly its duration, and thus controlling synaptic strength at different levels of presynaptic V(m). The level of background Ca(2+) may also participate in mediating the analog signaling. Together, these findings enrich our knowledge on the principles of neuronal signaling in the CNS and help understand how the brain works.
Action Potentials
;
physiology
;
Animals
;
Axons
;
physiology
;
Central Nervous System
;
cytology
;
physiology
;
Humans
;
Membrane Potentials
;
physiology
;
NAV1.2 Voltage-Gated Sodium Channel
;
physiology
;
NAV1.6 Voltage-Gated Sodium Channel
;
physiology
;
Neocortex
;
cytology
;
physiology
;
Patch-Clamp Techniques
;
Pyramidal Cells
;
physiology
;
Sodium Channels
;
physiology
3.Unique characteristics of "the second brain" - The enteric nervous system.
Jun-Hua LI ; Rui DUAN ; Liang LI ; Jackie D WOOD ; Xi-Yu WANG ; Yousheng SHU ; Guo-Du WANG
Acta Physiologica Sinica 2020;72(3):382-390
Enteric nervous system (ENS) is composed of intestinal submucosal and myenteric plexuses. ENS may independently regulate intestinal digestive and absorptive function, and it is also known as "the second brain" or gut brain. ENS has significant specificity relative to central nervous system (CNS) in properties and functional activities of neurons and neural circuits. ENS is connected with CNS through the feedback pathway (brain-gut-axis) of sympathetic and parasympathetic nerves and peripheral primary sensory afferent nerves to form the bidirectional brain-gut-axis, which may affect emotion, appetite and behavioral states of individuals. Gastrointestinal functional disorder (GIFD) induced by ENS dysfunction may not only cause abnormal gastrointestinal function but also has been implicated in cognitive and mood disorders, such as irritable bowel syndrome (IBS). GIFD would influence deeply the quality of life in patients. Nevertheless, in the worldwide, ENS has so far received much less attention as compared with CNS. The depth of research and scale of investment in ENS studies have been much lower than those in CNS studies. The situation in China is even more evident. From ENS research history, an outstanding problem is to ignore largely the unique properties of ENS and apply mechanically the hypotheses formed in CNS studies to ENS researches. In this review, the structure and function of ENS are briefly introduced, and the importance of extraordinary characteristics of ENS is illustrated by the problems encountered in our studies.
Brain
;
China
;
Enteric Nervous System
;
Humans
;
Quality of Life
4.Laminar Distribution of Neurochemically-Identified Interneurons and Cellular Co-expression of Molecular Markers in Epileptic Human Cortex.
Qiyu ZHU ; Wei KE ; Quansheng HE ; Xiongfei WANG ; Rui ZHENG ; Tianfu LI ; Guoming LUAN ; Yue-Sheng LONG ; Wei-Ping LIAO ; Yousheng SHU
Neuroscience Bulletin 2018;34(6):992-1006
Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.
Adolescent
;
Adult
;
Brain Chemistry
;
genetics
;
physiology
;
Cerebral Cortex
;
metabolism
;
pathology
;
Child
;
Cholecystokinin
;
metabolism
;
Epilepsy
;
etiology
;
pathology
;
Female
;
Gene Expression Regulation
;
physiology
;
Humans
;
Interneurons
;
metabolism
;
Male
;
Middle Aged
;
Neuropeptide Y
;
metabolism
;
Parvalbumins
;
metabolism
;
Phosphopyruvate Hydratase
;
metabolism
;
Somatostatin
;
metabolism
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Young Adult
5.Functional Autapses Form in Striatal Parvalbumin Interneurons but not Medium Spiny Projection Neurons.
Xuan WANG ; Zhenfeng SHU ; Quansheng HE ; Xiaowen ZHANG ; Luozheng LI ; Xiaoxue ZHANG ; Liang LI ; Yujie XIAO ; Bo PENG ; Feifan GUO ; Da-Hui WANG ; Yousheng SHU
Neuroscience Bulletin 2023;39(4):576-588
Autapses selectively form in specific cell types in many brain regions. Previous studies have also found putative autapses in principal spiny projection neurons (SPNs) in the striatum. However, it remains unclear whether these neurons indeed form physiologically functional autapses. We applied whole-cell recording in striatal slices and identified autaptic cells by the occurrence of prolonged asynchronous release (AR) of neurotransmitters after bursts of high-frequency action potentials (APs). Surprisingly, we found no autaptic AR in SPNs, even in the presence of Sr2+. However, robust autaptic AR was recorded in parvalbumin (PV)-expressing neurons. The autaptic responses were mediated by GABAA receptors and their strength was dependent on AP frequency and number. Further computer simulations suggest that autapses regulate spiking activity in PV cells by providing self-inhibition and thus shape network oscillations. Together, our results indicate that PV neurons, but not SPNs, form functional autapses, which may play important roles in striatal functions.
Parvalbumins/metabolism*
;
Corpus Striatum/metabolism*
;
Interneurons/physiology*
;
Neurons/metabolism*
;
Neostriatum
6.Hotspots and prospects of esophageal cancer research in China.
Yousheng MAO ; Shu Geng GAO ; Yin LI ; Qi XUE ; Feng LI ; Dong Hui JIN ; Hang YI ; Jie HE
Chinese Journal of Gastrointestinal Surgery 2023;26(4):307-311
Esophageal cancer is a malignant tumor with a high incidence in China. At pesent, advanced esophageal cancer patients are still frequently encountered. The primary treatment for resectable advanced esophageal cancer is surgery-based multimodality therapy, including preoperative neoadjuvant therapy, such as chemotherapy, chemoradiotherapy or chemotherapy plus immunotherapy, followed by radical esophagectomy with thoraco-abdominal two-field or cervico-thoraco-abdominal three-field lymphadenectomy via minimally invasive approach or thoracotomy. In addition, adjuvant chemotherapy, radiotherapy, or chemoradiotherapy, or immunotherapy may also be administered if suggested by postoperative pathological results. Although the treatment outcome of esophageal cancer has improved significantly in China, many clinical issues remain controversial. In this article, we summarize the current hotspots and important issues of esophageal cancer in China, including prevention and early diagnosis, treatment selection for early esophageal cancer, surgical approach selection, lymphadenectomy method, preoperative neoadjuvant therapy, postoperative adjuvant therapy, and nutritional support treatment.
Humans
;
Esophageal Neoplasms/surgery*
;
Combined Modality Therapy
;
Neoadjuvant Therapy/methods*
;
Chemoradiotherapy
;
Chemotherapy, Adjuvant
;
Esophagectomy/methods*
7.Standardized Operational Protocol for Human Brain Banking in China.
Wenying QIU ; Hanlin ZHANG ; Aimin BAO ; Keqing ZHU ; Yue HUANG ; Xiaoxin YAN ; Jing ZHANG ; Chunjiu ZHONG ; Yong SHEN ; Jiangning ZHOU ; Xiaoying ZHENG ; Liwei ZHANG ; Yousheng SHU ; Beisha TANG ; Zhenxin ZHANG ; Gang WANG ; Ren ZHOU ; Bing SUN ; Changlin GONG ; Shumin DUAN ; Chao MA
Neuroscience Bulletin 2019;35(2):270-276
Brain
;
pathology
;
China
;
Humans
;
Organ Preservation
;
standards
;
Tissue Banks
;
ethics
;
standards