1.Current status of proton therapy techniques for lung cancer
Radiation Oncology Journal 2019;37(4):232-248
Proton beams have been used for cancer treatment for more than 28 years, and several technological advancements have been made to achieve improved clinical outcomes by delivering more accurate and conformal doses to the target cancer cells while minimizing the dose to normal tissues. The state-of-the-art intensity modulated proton therapy is now prevailing as a major treatment technique in proton facilities worldwide, but still faces many challenges in being applied to the lung. Thus, in this article, the current status of proton therapy technique is reviewed and issues regarding the relevant uncertainty in proton therapy in the lung are summarized.
Lung Neoplasms
;
Lung
;
Proton Therapy
;
Protons
;
Uncertainty
2.Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans.
Youngyih HAN ; Sung Sil CHU ; Seung Jae HUH ; Chang Ok SUH
The Journal of the Korean Society for Therapeutic Radiology and Oncology 2003;21(3):238-244
PURPOSE: The planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. MATERIALS AND METHODS: As primary input data, the program takes patients' planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were performed in a 10x12x10 cm3 grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans performed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients' plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. RESULTS: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of 2.8% in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip region of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a 3.4% deviation from the TPS plans. CONCLUSION: The accurate validation of complicate treatment plans is possible with the developed software and the quality of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.
Anisotropy
;
Axis, Cervical Vertebra
;
Brachytherapy*
;
Humans
3.Erratum: Acknowledgments correction.
BoKyong KIM ; Hee Chul PARK ; Dongryul OH ; Eun Hyuk SHIN ; Yong Chan AHN ; Jinsung KIM ; Youngyih HAN
Radiation Oncology Journal 2012;30(2):97-97
The funding acknowledgment in this article was partially omitted as published.
4.Development of the DVH management software for the biologically-guided evaluation of radiotherapy plan.
Bokyong KIM ; Hee Chul PARK ; Dongryul OH ; Eun Hyuk SHIN ; Yong Chan AHN ; Jinsung KIM ; Youngyih HAN
Radiation Oncology Journal 2012;30(1):43-48
PURPOSE: To develop the dose volume histogram (DVH) management software which guides the evaluation of radiotherapy (RT) plan of a new case according to the biological consequences of the DVHs from the previously treated patients. MATERIALS AND METHODS: We determined the radiation pneumonitis (RP) as an biological response parameter in order to develop DVH management software. We retrospectively reviewed the medical records of lung cancer patients treated with curative 3-dimensional conformal radiation therapy (3D-CRT). The biological event was defined as RP of the Radiation Therapy Oncology Group (RTOG) grade III or more. RESULTS: The DVH management software consisted of three parts (pre-existing DVH database, graphical tool, and Pinnacle3 script). The pre-existing DVH data were retrieved from 128 patients. RP events were tagged to the specific DVH data through retrospective review of patients' medical records. The graphical tool was developed to present the complication histogram derived from the pre-existing database (DVH and RP) and was implemented into the radiation treatment planning (RTP) system, Pinnacle3 v8.0 (Phillips Healthcare). The software was designed for the pre-existing database to be updated easily by tagging the specific DVH data with the new incidence of RP events at the time of patients' follow-up. CONCLUSION: We developed the DVH management software as an effective tool to incorporate the phenomenological consequences derived from the pre-existing database in the evaluation of a new RT plan. It can be used not only for lung cancer patients but also for the other disease site with different toxicity parameters.
Humans
;
Incidence
;
Lung Neoplasms
;
Medical Records
;
Radiation Pneumonitis
;
Retrospective Studies
5.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
6.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
7.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
8.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
9.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
10.Analysis of the Imaging Dose for IGRT/Gated Treatments.
Jung Suk SHIN ; Youngyih HAN ; Sang Gyu JU ; Eunhyuk SHIN ; Chae Seon HONG ; Yong Chan AHN
The Journal of the Korean Society for Therapeutic Radiology and Oncology 2009;27(1):42-48
PURPOSE: The introduction of image guided radiation therapy/four-dimensional radiation therapy (IGRT/4DRT) potentially increases the accumulated dose to patients from imaging and verification processes as compared to conventional practice. It is therefore essential to investigate the level of the imaging dose to patients when IGRT/4DRT devices are installed. The imaging dose level was monitored and was compared with the use of pre-IGRT practice. MATERIALS AND METHODS: A four-dimensional CT (4DCT) unit (GE, Ultra Light Speed 16), a simulator (Varian Acuity) and Varian IX unit with an on-board imager (OBI) and cone beam CT (CBCT) were installed. The surface doses to a RANDO phantom (The Phantom Laboratory, Salem, NY USA) were measured with the newly installed devices and with pre-existing devices including a single slice CT scanner (GE, Light Speed), a simulator (Varian Ximatron) and L-gram linear accelerator (Varian, 2100C Linac). The surface doses were measured using thermo luminescent dosimeters (TLDs) at eight sites-the brain, eye, thyroid, chest, abdomen, ovary, prostate and pelvis. RESULTS: Compared to imaging with the use of single slice non-gated CT, the use of 4DCT imaging increased the dose to the chest and abdomen approximately ten-fold (1.74+/-0.34 cGy versus 23.23+/-3.67 cGy ). Imaging doses with the use of the Acuity simulator were smaller than doses with the use of the Ximatron simulator, which were 0.91+/-0.89 cGy versus 6.77+/-3.56 cGy, respectively. The dose with the use of the electronic portal imaging device (EPID; Varian IX unit) was approximately 50% of the dose with the use of the L-gram linear accelerator (1.83+/-0.36 cGy versus 3.80+/-1.67 cGy). The dose from the OBI for fluoroscopy and low-dose mode CBCT were 0.97+/-0.34 cGy and 2.3+/-0.67 cGy, respectively. CONCLUSION: The use of 4DCT is the major source of an increase of the radiation (imaging) dose to patients. OBI and CBCT doses were small, but the accumulated dose associated with everyday verification need to be considered
Abdomen
;
Brain
;
Cone-Beam Computed Tomography
;
Electronics
;
Electrons
;
Eye
;
Female
;
Fluoroscopy
;
Four-Dimensional Computed Tomography
;
Humans
;
Light
;
Ovary
;
Particle Accelerators
;
Pelvis
;
Prostate
;
Thorax
;
Thyroid Gland