1.Biologic response of local hemostatic agents used in endodontic microsurgery.
Youngjune JANG ; Hyeon KIM ; Byoung Duck ROH ; Euiseong KIM
Restorative Dentistry & Endodontics 2014;39(2):79-88
Appropriate use of local hemostatic agent is one of the important factors on the prognosis of endodontic microsurgery. However, most investigations to date focus on the hemostatic efficacy of the agents, whereas their biologic characteristics have not received enough attention. The purpose of this paper was to review the biologic response of local hemostatic agents, and to provide clinical guidelines on their use during endodontic microsurgery. Electronic database (PUBMED) was screened to search related studies from 1980 to 2013, and 8 clinical studies and 18 animal studies were identified. Among the materials used in these studies, most widely-investigated and used materials, epinephrine, ferric sulfate (FS) and calcium sulfate (CS), were thoroughly discussed. Influence of these materials on local tissue and systemic condition, such as inflammatory and foreign body reaction, local ischemia, dyspigmentation, delayed or enhanced bone and soft tissue healing, and potential cardiovascular complications were assessed. Additionally, biological property of their carrier materials, cotton pellet and absorbable collagen, were also discussed. Clinicians should be aware of the biologic properties of local hemostatic agents and their carrier materials, and should pay attention to the potential complications when using them in endodontic microsurgery.
Animals
;
Calcium Sulfate
;
Collagen
;
Epinephrine
;
Foreign-Body Reaction
;
Hemostatics
;
Ischemia
;
Microsurgery*
;
Population Characteristics
;
Prognosis
2.Cardiovascular effect of epinephrine in endodontic microsurgery: a review.
Restorative Dentistry & Endodontics 2013;38(4):187-193
Epinephrine is one of the most widely-used vasoconstrictors in dental treatment including endodontic microsurgery. However, the systemic safety of epinephrine has been in debate for many years because of its potential risk to cause cardiovascular complications. The purpose of this review was to assess the cardiovascular effect of epinephrine use in endodontic microsurgery. Endodontic microsurgery directly applies epinephrine into the bone cavity, and the amount is reported to be much larger than other dental surgeries. Moreover, when considering that systemic potency of intraosseous application is reported to be comparable to intravenous application, the systemic influence of epinephrine could be increased in endodontic microsurgery. Besides, pre-existing cardiovascular complications or drug interactions can enhance its systemic influence, resulting in increased susceptibility to cardiovascular complications. Although clinical studies have not reported significant complications for patients without severe systemic complications, many epinephrine-induced emergency cases are warning the cardiovascular risk related with pre-existing systemic disease or drug interactions. Epinephrine is a dose-sensitive drug, and its hypersensitivity reaction can be fatal to patients when it is related to cardiovascular complications. Therefore, clinicians should recognize the risk, and the usage of pre-operative patient evaluation, dose control and patient monitoring are required to ensure patient's safety during endodontic microsurgery.
Cardiovascular Diseases
;
Drug Interactions
;
Emergencies
;
Epinephrine*
;
Hemostasis
;
Humans
;
Hypersensitivity
;
Microsurgery*
;
Monitoring, Physiologic
;
Vasoconstrictor Agents
3.False-negative results on computer-aided detection software in preoperative automated breast ultrasonography of breast cancer patients
Youngjune KIM ; Jiwon RIM ; Sun Mi KIM ; Bo La YUN ; So Yeon PARK ; Hye Shin AHN ; Bohyoung KIM ; Mijung JANG
Ultrasonography 2021;40(1):83-92
Purpose:
The purpose of this study was to measure the cancer detection rate of computer-aided detection (CAD) software in preoperative automated breast ultrasonography (ABUS) of breast cancer patients and to determine the characteristics associated with false-negative outcomes.
Methods:
A total of 129 index lesions (median size, 1.7 cm; interquartile range, 1.2 to 2.4 cm) from 129 consecutive patients (mean age±standard deviation, 53.4±11.8 years) who underwent preoperative ABUS from December 2017 to February 2018 were assessed. An index lesion was defined as a breast cancer confirmed by ultrasonography (US)-guided core needle biopsy. The detection rate of the index lesions, positive predictive value (PPV), and false-positive rate (FPR) of the CAD software were measured. Subgroup analysis was performed to identify clinical and US findings associated with false-negative outcomes.
Results:
The detection rate of the CAD software was 0.84 (109 of 129; 95% confidence interval, 0.77 to 0.90). The PPV and FPR were 0.41 (221 of 544; 95% CI, 0.36 to 0.45) and 0.45 (174 of 387; 95% CI, 0.40 to 0.50), respectively. False-negative outcomes were more frequent in asymptomatic patients (P<0.001) and were associated with the following US findings: smaller size (P=0.001), depth in the posterior third (P=0.002), angular or indistinct margin (P<0.001), and absence of architectural distortion (P<0.001).
Conclusion
The CAD software showed a promising detection rate of breast cancer. However, radiologists should judge whether CAD software-marked lesions are true- or false-positive lesions, considering its low PPV and high FPR. Moreover, it would be helpful for radiologists to consider the characteristics associated with false-negative outcomes when reading ABUS with CAD.