1.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
2.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
3.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
4.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
5.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
6.Risk Factors for Unfavorable Outcomes of Tuberculosis in Korea:Implications for Patient-Centered
Hye Young HONG ; Youngmok PARK ; Seung Hyun YONG ; Ala WOO ; Ah Young LEEM ; Su Hwan LEE ; Kyung Soo CHUNG ; Sang Hoon LEE ; Song Yee KIM ; Eun Young KIM ; Ji Ye JUNG ; Moo Suk PARK ; Young Sam KIM ; Sung Jae SHIN ; Young Ae KANG
Journal of Korean Medical Science 2024;39(2):e4-
Background:
The treatment success rate for tuberculosis (TB) has stagnated at 80–81% in South Korea, indicating unsatisfactory outcomes. Enhancing treatment success rate necessitates the development of individualized treatment approaches for each patient. This study aimed to identify the risk factors associated with unfavorable treatment outcomes to facilitate tailored TB care.
Methods:
We retrospectively analyzed the data of patients with active TB between January 2019 and December 2020 at a single tertiary referral center. We classified unfavorable treatment outcomes according to the 2021 World Health Organization guidelines as follows:“lost to follow-up” (LTFU), “not evaluated” (NE), “death,” and “treatment failure” (TF).Moreover, we analyzed risk factors for each unfavorable outcome using Cox proportional hazard regression analysis.
Results:
A total of 659 patients (median age 62 years; male 54.3%) were included in the study.The total unfavorable outcomes were 28.1%: 4.6% LTFU, 9.6% NE, 9.1% deaths, and 4.9% TF. Multivariate analysis showed that a culture-confirmed diagnosis of TB was associated with a lower risk of LTFU (adjusted hazard ratio [aHR], 0.25; 95% confidence interval [CI], 0.10–0.63), whereas the occurrence of adverse drug reactions (ADRs) significantly increased the risk of LTFU (aHR, 6.63; 95% CI, 2.63–16.69). Patients living far from the hospital (aHR, 4.47; 95% CI, 2.50–7.97) and those with chronic kidney disease (aHR, 3.21; 95% CI, 1.33–7.75) were at higher risk of being transferred out to other health institutions (NE). Higher mortality was associated with older age (aHR, 1.06; 95% CI, 1.04–1.09) and comorbidities. The ADRs that occurred during TB treatment were a risk factor for TF (aHR, 6.88; 95% CI, 2.24–21.13).
Conclusion
Unfavorable outcomes of patients with TB were substantial at a tertiary referral center, and the risk factors for each unfavorable outcome varied. To improve treatment outcomes, close monitoring and the provision of tailored care for patients with TB are necessary.
7.Clinical Characteristics and Treatment Outcomes of Pulmonary Diseases Caused by Coinfections With Multiple Nontuberculous Mycobacterial Species
Sol KIM ; A La WOO ; Seung Hyun YONG ; Ah Young LEEM ; Su Hwan LEE ; Sang Hoon LEE ; Song Yee KIM ; Kyungsoo CHUNG ; Eun Young KIM ; Ji Ye JUNG ; Young Ae KANG ; Moo Suk PARK ; Young Sam KIM ; Youngmok PARK
Journal of Korean Medical Science 2024;39(20):e167-
Background:
Coinfections with multiple nontuberculous mycobacterial (NTM) species have not been widely studied. We aimed to evaluate the clinical characteristics and treatment outcomes in patients with NTM-pulmonary disease (PD) caused by coinfection with multiple NTM species.
Methods:
We retrospectively reviewed patients with NTM-PD at a tertiary referral hospital in Korea between March 2012 and December 2018. Coinfection was defined as two or more species of NTM pathogens isolated from the same respiratory specimen or different specimens within three months.
Results:
Among 1,009 patients with NTM-PD, 147 (14.6%) NTM coinfections were observed (average age 64.7 years, 69.4% women). NTM species were identified more frequently (median 6 vs. 3 times, P < 0.001) in the coinfection group than in the single species group, and follow-up duration was also longer in the coinfection group (median 44.9 vs. 27.1 months, P < 0.001). Mycobacterium avium complex (MAC) and M. abscessus and M. massiliense (MAB) were the dominant combinations (n = 71, 48.3%). For patients treated for over six months in the MAC plus MAB group (n = 31), sputum culture conversion and microbiological cure were achieved in 67.7% and 41.9% of patients, respectively. We divided the MAC plus MAB coinfection group into three subgroups according to the target mycobacteria; however, no statistical differences were found in the treatment outcomes.
Conclusion
In NTM-PD cases, a significant number of multiple NTM species coinfections occurred. Proper identification of all cultured NTM species through follow-up is necessary to detect multispecies coinfections. Further research is needed to understand the nature of NTM-PD in such cases.
8.Diagnosis of Primary Ciliary Dyskinesia via Whole Exome Sequencing and Histologic Findings
Jiyoung OH ; Jin-Sung LEE ; Moo Suk PARK ; Young Ae KANG ; Hyung-Ju CHO ; Song Yee KIM ; Jinsei JUNG ; Sun Och YOON ; Kyung Won KIM
Yonsei Medical Journal 2024;65(1):48-54
Purpose:
To assess the diagnostic potential of whole-exome sequencing (WES) and elucidate the clinical and genetic characteristics of primary ciliary dyskinesia (PCD) in the Korean population.
Materials and Methods:
Forty-seven patients clinically suspected of having PCD were enrolled at a tertiary medical center. WES was performed in all patients, and seven patients received biopsy of cilia and transmission electron microscopy (TEM).
Results:
Overall, PCD was diagnosed in 10 (21.3%) patients: eight by WES (8/47, 17%), four by TEM. Among patients diagnosed as PCD based on TEM results, two patients showed consistent results with WES and TEM of PCD (2/4, 50%). In addition, five patients, who were not included in the final PCD diagnosis group, had variants of unknown significance in PCD-related genes (5/47, 10.6%).The most frequent pathogenic (P)/likely pathogenic (LP) variants were detected in DNAH11 (n=4, 21.1%), DRC1 (n=4, 21.1%), and DNAH5 (n=4, 21.1%). Among the detected 17 P/LP variants in PCD-related genes in this study, 8 (47.1%) were identified as novel variants. Regarding the genotype–phenotype correlation in this study, the authors experienced severe PCD cases caused by the LP/P variants in MCIDAS, DRC1, and CCDC39.
Conclusion
Through this study, we were able to confirm the value of WES as one of the diagnostic tools for PCD, which increases with TEM, rather than single gene tests. These results will prove useful to hospitals with limited access to PCD diagnostic testing but with relatively efficient in-house or outsourced access to genetic testing at a pre-symptomatic or early disease stage.
9.COVID-19 Vaccine-Associated Pneumonitis in the Republic of Korea:A Nationwide Multicenter Survey
Hongseok YOO ; Song Yee KIM ; Moo Suk PARK ; Sung Hwan JEONG ; Sung-Woo PARK ; Hong Lyeol LEE ; Hyun-Kyung LEE ; Sei-Hoon YANG ; Yangjin JEGAL ; Jung-Wan YOO ; Jongmin LEE ; Hyung Koo KANG ; Sun Mi CHOI ; Jimyung PARK ; Young Whan KIM ; Jin Woo SONG ; Joo Hun PARK ; Won-Il CHOI ; Hye Sook CHOI ; Chul PARK ; Jeong-Woong PARK ; Man Pyo CHUNG
Journal of Korean Medical Science 2023;38(14):e106-
Background:
Recent reports have suggested that pneumonitis is a rare complication following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).However, its clinical features and outcomes are not well known. The aim of this study was to identify the clinical characteristics and outcomes of patients with vaccine-associated pneumonitis following vaccination against SARS-CoV-2.
Methods:
In this nationwide multicenter survey study, questionnaires were distributed to pulmonary physicians in referral hospitals. They were asked to report cases of development or exacerbation of interstitial lung disease (ILD) associated with the coronavirus disease 2019 vaccine. Vaccine-associated pneumonitis was defined as new pulmonary infiltrates documented on chest computed tomography within 4 weeks of vaccination and exclusion of other possible etiologies.
Results:
From the survey, 49 cases of vaccine-associated pneumonitis were identified between February 27 and October 30, 2021. After multidisciplinary discussion, 46 cases were analyzed. The median age was 66 years and 28 (61%) were male. The median interval between vaccination and respiratory symptoms was 5 days. There were 20 (43%), 17 (37%), and nine (19%) patients with newly identified pneumonitis, exacerbation of pre-diagnosed ILD, and undetermined pre-existing ILD, respectively. The administered vaccines were BNT162b2 and ChAdOx1 nCov-19/AZD1222 each in 21 patients followed by mRNA-1273 in three, and Ad26.COV2.S in one patient. Except for five patients with mild disease, 41 (89%) patients were treated with corticosteroid. Significant improvement was observed in 26 (57%) patients including four patients who did not receive treatment. However, ILD aggravated in 9 (20%) patients despite treatment. Mortality was observed in eight (17%) patients.
Conclusion
These results suggest pneumonitis as a potentially significant safety concern for vaccines against SARS-CoV-2. Clinical awareness and patient education are necessary for early recognition and prompt management. Additional research is warranted to identify the epidemiology and characterize the pathophysiology of vaccine-associated pneumonitis.
10.Treatment Outcome of the Brain Metastases in Peri-Rolandic Area: Comparison Between Surgery and Stereotactic Radiosurgery
Jun Hyeok JUNG ; Kawngwoo PARK ; Eun Young KIM ; Chan-Jong YOO ; Gi-Taek YEE ; Woo-Kyung KIM ; Dong-Won SHIN
Brain Tumor Research and Treatment 2023;11(4):246-253
Background:
Brain metastases of peri-Rolandic area is crucial as it directly impacts the quality of life for cancer patients. Surgery or stereotactic radiosurgery (SRS) is considered for peri-Rolandic brain metastases as for other brain metastases. However, the benefit of each treatment modality on functional outcome has not been clearly defined for this tumor. The purpose of this study is to compare the functional course of each treatment and to suggest an effective treatment for patients’ quality of life.
Methods:
Fifty-two patients who had undergone SRS or surgery for brain metastasis confirmedby enhanced MRI were enrolled retrospectively. Overall survival (OS), progression free survival (PFS), and functional outcomes were estimated using the Kaplan-Meier method, univariate, multivariate analysis, and Cox proportional hazards regression.
Results:
Median OS and PFS were 13.3 months and 8.9 months in our study population.Treatment modalities were not significant factors for OS and PFS. Extracranial systemic cancer progression was significant factor for both parameters (p=0.030 for OS and p=0.040 for PFS). Median symptom improvement (improvement of at least 1 grade after surgery compared to preoperative state) time was significantly shorter in surgery group than in the SRS group (10.5 days vs. 37.5 days, p=0.034).
Conclusion
Surgery for brain metastases can contribute to a positive quality of life for the remain-ing duration of the patient’s life.

Result Analysis
Print
Save
E-mail