1.Role of Cell Adhesion Molecule inAngiogenesis.
Journal of Korean Society of Endocrinology 2001;16(3):305-312
No abstract available.
Cell Adhesion*
2.The relationship between mandibular asymmetry and temporomandibular joint disc displacement on mri.
Young Yuhn CHOI ; Jong Ki HUH ; Yeong Bok SONG ; Won Gyung GHO ; Hyung Gon KIM
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2003;29(1):35-42
PURPOSE: This study was aimed to investigate the relationship between the mandibular asymmetry and the internal derangement of temporomandibular joint. MATERIALS AND METHODS: One hundred and sixty eight patients had been assessed through clinical examinations, panoramic radi-ographs and magnetic resonance imagings (MRIs), were selected. The samples were classified into three subgroups according to the severity of the mandibular asymmetries in the panoramic radiographs and the status of TMJ discs on the MRI were compared among each groups. RESULTS: In an apparent asymmetry group, there was a significant difference in the number of temporomandibular disk displacement without reduction between the long and short side (66.7%, 18/27 joints on the short side) when the ratio of condylar process and coro-noid process was used (P<0.05), but there was no statistically significant difference when the ratio of condyle and ramus was used. CONCLUSION: The probability of the disc displacement without reduction was higher at the side with relatively shorter condylar process on the panoramic radiograph, and also it might be more effective to use ratio of condylar process and coronoid process in the assessment of mandibular asymmetry. Therefore, a careful assessment on the temporomandibular disorders is necessary to diagnose and establish the treatment plans for the patients with a mandibular asymmetry and the panoramic radiograph can be used effectively on that way.
Humans
;
Joints
;
Magnetic Resonance Imaging*
;
Temporomandibular Joint Disc*
;
Temporomandibular Joint Disorders
;
Temporomandibular Joint*
3.Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-gamma.
Byung Jae LEE ; Hyung Geun MOON ; Tae Seop SHIN ; Seong Gyu JEON ; Eun Young LEE ; Yong Song GHO ; Chun Geun LEE ; Zhou ZHU ; Jack A ELIAS ; Yoon Keun KIM
Experimental & Molecular Medicine 2011;43(4):169-178
Recent clinical evidence indicates that the non-eosinophilic subtype of severe asthma is characterized by fixed airway obstruction, which may be related to emphysema. Transgenic studies have demonstrated that high levels of IFN-gamma in the airways induce emphysema. Fibroblast growth factor 2 (FGF2), which is the downstream mediator of TGF-beta, is important in wound healing. We investigated the role of FGF2 in IFN-gamma-induced emphysema and the therapeutic effects of recombinant FGF2 in the prevention of emphysema in a severe non-eosinophilic asthma model. To evaluate the role of FGF2 in IFN-gamma-induced emphysema, lung targeted IFN-gamma transgenic mice were cross-bred with FGF2-deficient mice. A severe non-eosinophilic asthma model was generated by airway application of LPS-containing allergens twice a week for 4 weeks. To evaluate protective effects of FGF2, recombinant FGF2 (10 microg) was injected subcutaneously during allergen challenge in the severe asthma model. We found that non-eosinophilic inflammation and emphysema induced by transgenic overexpression of IFN-gamma in the airways were aggravated by the absence of FGF2. Airway challenge with LPS-containing allergens induced more inflammation in mice sensitized with LPS-containing allergens compared to challenge with allergens alone. In addition, LPS-induced lung inflammation and emphysema depended on IFN-gamma but not on IL-13. Interestingly, emphysema in the severe asthma model was significantly inhibited by treatment with recombinant FGF2 during allergen challenge, whereas lung inflammation was unaffected. Therefore, our present data suggest that FGF2 may help protect against IFN-gamma-induced emphysema, and that recombinant FGF2 may help lessen the severity of emphysema.
Animals
;
Asthma/drug therapy/*prevention & control
;
Bronchoalveolar Lavage Fluid
;
Disease Models, Animal
;
Emphysema/drug therapy/*prevention & control
;
Enzyme-Linked Immunosorbent Assay
;
Fibroblast Growth Factor 2/deficiency/*metabolism/*therapeutic use
;
Flow Cytometry
;
Inflammation/immunology
;
Interferon-gamma/*biosynthesis/genetics
;
Interleukin-13
;
Lipopolysaccharides/administration & dosage/pharmacology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Pulmonary Eosinophilia
;
Recombinant Proteins/administration & dosage/therapeutic use
4.IL-12-STAT4-IFN-gamma axis is a key downstream pathway in the development of IL-13-mediated asthma phenotypes in a Th2 type asthma model.
You Sun KIM ; Seng Jin CHOI ; Jun Pyo CHOI ; Seong Gyu JEON ; Sun Young OH ; Byung Jae LEE ; Yong Song GHO ; Chun Geun LEE ; Zhou ZHU ; Jack A ELIAS ; Yoon Keun KIM
Experimental & Molecular Medicine 2010;42(8):533-546
IL-4 and IL-13 are closely related cytokines that are produced by Th2 cells. However, IL-4 and IL-13 have different effects on the development of asthma phenotypes. Here, we evaluated downstream molecular mechanisms involved in the development of Th2 type asthma phenotypes. A murine model of Th2 asthma was used that involved intraperitoneal sensitization with an allergen (ovalbumin) plus alum and then challenge with ovalbumin alone. Asthma phenotypes, including airway-hyperresponsiveness (AHR), lung inflammation, and immunologic parameters were evaluated after allergen challenge in mice deficient in candidate genes. The present study showed that methacholine AHR and lung inflammation developed in allergen-challenged IL-4-deficient mice but not in allergen-challenged IL-13-deficient mice. In addition, the production of OVA-specific IgG2a and IFN-gamma-inducible protein (IP)-10 was also impaired in the absence of IL-13, but not of IL-4. Lung-targeted IFN-gamma over-expression in the airways enhanced methacholine AHR and non-eosinophilic inflammation; in addition, these asthma phenotypes were impaired in allergen-challenged IFN-gamma-deficient mice. Moreover, AHR, non-eosinophilic inflammation, and IFN-gamma expression were impaired in allergen-challenged IL-12Rbeta2- and STAT4-deficient mice; however, AHR and non-eosinophilic inflammation were not impaired in allergen-challenged IL-4Ralpha-deficient mice, and these phenomena were accompanied by the enhanced expression of IL-12 and IFN-gamma. The present data suggest that IL-13-mediated asthma phenotypes, such as AHR and non-eosinophilic inflammation, in the Th2 type asthma are dependent on the IL-12-STAT4-IFN-gamma axis, and that these asthma phenotypes are independent of IL-4Ralpha-mediated signaling.
Allergens/immunology
;
Animals
;
Asthma/complications/*immunology/pathology/physiopathology
;
Bronchial Hyperreactivity/complications/immunology/pathology
;
Disease Models, Animal
;
Interferon-gamma/*immunology
;
Interleukin-12/*immunology
;
Interleukin-12 Receptor beta 2 Subunit/metabolism
;
Interleukin-13/deficiency/*immunology
;
Interleukin-4/deficiency
;
Methacholine Chloride
;
Mice
;
Mice, Transgenic
;
Models, Immunological
;
Organ Specificity
;
Pneumonia/complications/immunology/pathology
;
Receptors, Cell Surface/metabolism
;
STAT4 Transcription Factor/*metabolism
;
Signal Transduction/*immunology
;
Th2 Cells/*immunology