1.High-Dose Rifampicin for 3 Months after Culture Conversion for Drug-Susceptible Pulmonary Tuberculosis
Nakwon KWAK ; Joong-Yub KIM ; Hyung-Jun KIM ; Byoung-Soo KWON ; Jae Ho LEE ; Jeongha MOK ; Yong-Soo KWON ; Young Ae KANG ; Youngmok PARK ; Ji Yeon LEE ; Doosoo JEON ; Jung-Kyu LEE ; Jeong Seong YANG ; Jake WHANG ; Kyung Jong KIM ; Young Ran KIM ; Minkyoung CHEON ; Jiwon PARK ; Seokyung HAHN ; Jae-Joon YIM
Tuberculosis and Respiratory Diseases 2025;88(1):170-180
Background:
This study aimed to determine whether a shorter high-dose rifampicin regimen is non-inferior to the standard 6-month tuberculosis regimen.
Methods:
This multicenter, randomized, open-label, non-inferiority trial enrolled participants with respiratory specimen positivity by Xpert MTB/RIF assay or Mycobacterium tuberculosis culture without rifampicin-resistance. Participants were randomized at 1:1 to the investigational or control group. The investigational group received high-dose rifampicin (30 mg/kg/day), isoniazid, and pyrazinamide until culture conversion, followed by high-dose rifampicin and isoniazid for 12 weeks. The control group received the standard 6-month regimen. The primary outcome was the rate of unfavorable outcomes at 18 months post-randomization. The non-inferiority margin was set at <6% difference in unfavorable outcomes rates. The study is registered with ClinicalTrials.gov (NCT04485156)
Results:
Between 4 November 2020 and 3 January 2022, 76 participants were enrolled. Of these, 58 were included in the modified intention-to-treat analysis. Unfavorable outcomes occurred in 10 (31.3%) of 32 in the control group and 10 (38.5%) of 26 in the investigational group. The difference was 7.2% (95% confidence interval, ∞ to 31.9%), failing to prove non-inferiority. Serious adverse events and grade 3 or higher adverse events did not differ between the groups.
Conclusion
The shorter high-dose rifampicin regimen failed to demonstrate non-inferiority but had an acceptable safety profile.
2.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
3.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
4.Comparison between Suture-Button Technique with Syndesmotic Repair and Screw Fixation Technique for Complete Ankle Syndesmotic Injury: Biomechanical Cadaveric Study
Hong Seop LEE ; Sung Hwan KIM ; Ki Won YOUNG ; Woo Jong KIM ; Dong-Il CHEON ; Sung Hun WON ; Sang Heon LEE ; Seung Jin CHOI ; Young Koo LEE
Clinics in Orthopedic Surgery 2025;17(2):324-330
Background:
The tibiofibular syndesmosis is essential for preserving the stability of the ankle. Acute syndesmotic injuries with evident or latent instability usually warrant surgical interventions. This cadaveric study examines and compares biomechanical characteristics between the following treatments for syndesmosis injuries: suture-button fixation plus syndesmotic repair and screw fixation.
Methods:
The lower extremities of 10 cadavers disarticulated at the knee joints were used, yielding 20 feet. Ten feet underwent surgery using the suture-button fixation with syndesmotic repair, while the remaining 10 feet underwent surgery using screw fixation. Before surgical treatment of syndesmosis injuries, each cadaveric lower limb underwent preliminary physiological cyclic loading, which was followed by a series of postfixation cyclic loading tests after the surgical procedure.
Results:
Our principal finding is that suture-button fixation with syndesmotic repair provided torsional strength comparable to that of screw fixation. The mean failure torque did not differ between the 2 groups, but the rotational stiffness was significantly lower in the suture-button fixation/augmentation group.
Conclusions
Suture-button fixation/augmentation facilitates flexible (physiological) syndesmosis movement and may be a useful alternative treatment for ankle syndesmosis injury.
5.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
6.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
7.High-Dose Rifampicin for 3 Months after Culture Conversion for Drug-Susceptible Pulmonary Tuberculosis
Nakwon KWAK ; Joong-Yub KIM ; Hyung-Jun KIM ; Byoung-Soo KWON ; Jae Ho LEE ; Jeongha MOK ; Yong-Soo KWON ; Young Ae KANG ; Youngmok PARK ; Ji Yeon LEE ; Doosoo JEON ; Jung-Kyu LEE ; Jeong Seong YANG ; Jake WHANG ; Kyung Jong KIM ; Young Ran KIM ; Minkyoung CHEON ; Jiwon PARK ; Seokyung HAHN ; Jae-Joon YIM
Tuberculosis and Respiratory Diseases 2025;88(1):170-180
Background:
This study aimed to determine whether a shorter high-dose rifampicin regimen is non-inferior to the standard 6-month tuberculosis regimen.
Methods:
This multicenter, randomized, open-label, non-inferiority trial enrolled participants with respiratory specimen positivity by Xpert MTB/RIF assay or Mycobacterium tuberculosis culture without rifampicin-resistance. Participants were randomized at 1:1 to the investigational or control group. The investigational group received high-dose rifampicin (30 mg/kg/day), isoniazid, and pyrazinamide until culture conversion, followed by high-dose rifampicin and isoniazid for 12 weeks. The control group received the standard 6-month regimen. The primary outcome was the rate of unfavorable outcomes at 18 months post-randomization. The non-inferiority margin was set at <6% difference in unfavorable outcomes rates. The study is registered with ClinicalTrials.gov (NCT04485156)
Results:
Between 4 November 2020 and 3 January 2022, 76 participants were enrolled. Of these, 58 were included in the modified intention-to-treat analysis. Unfavorable outcomes occurred in 10 (31.3%) of 32 in the control group and 10 (38.5%) of 26 in the investigational group. The difference was 7.2% (95% confidence interval, ∞ to 31.9%), failing to prove non-inferiority. Serious adverse events and grade 3 or higher adverse events did not differ between the groups.
Conclusion
The shorter high-dose rifampicin regimen failed to demonstrate non-inferiority but had an acceptable safety profile.
8.Comparison between Suture-Button Technique with Syndesmotic Repair and Screw Fixation Technique for Complete Ankle Syndesmotic Injury: Biomechanical Cadaveric Study
Hong Seop LEE ; Sung Hwan KIM ; Ki Won YOUNG ; Woo Jong KIM ; Dong-Il CHEON ; Sung Hun WON ; Sang Heon LEE ; Seung Jin CHOI ; Young Koo LEE
Clinics in Orthopedic Surgery 2025;17(2):324-330
Background:
The tibiofibular syndesmosis is essential for preserving the stability of the ankle. Acute syndesmotic injuries with evident or latent instability usually warrant surgical interventions. This cadaveric study examines and compares biomechanical characteristics between the following treatments for syndesmosis injuries: suture-button fixation plus syndesmotic repair and screw fixation.
Methods:
The lower extremities of 10 cadavers disarticulated at the knee joints were used, yielding 20 feet. Ten feet underwent surgery using the suture-button fixation with syndesmotic repair, while the remaining 10 feet underwent surgery using screw fixation. Before surgical treatment of syndesmosis injuries, each cadaveric lower limb underwent preliminary physiological cyclic loading, which was followed by a series of postfixation cyclic loading tests after the surgical procedure.
Results:
Our principal finding is that suture-button fixation with syndesmotic repair provided torsional strength comparable to that of screw fixation. The mean failure torque did not differ between the 2 groups, but the rotational stiffness was significantly lower in the suture-button fixation/augmentation group.
Conclusions
Suture-button fixation/augmentation facilitates flexible (physiological) syndesmosis movement and may be a useful alternative treatment for ankle syndesmosis injury.
9.The KAPARD guidelines for atopic dermatitis in children and adolescents:Part II. Systemic treatment, novel therapeutics, and adjuvant therapy
Hwan Soo KIM ; Eun LEE ; Kyunghoon KIM ; Taek Ki MIN ; Dong In SUH ; Yoon Ha HWANG ; Sungsu JUNG ; Minyoung JUNG ; Young A PARK ; Minji KIM ; In Suk SOL ; You Hoon JEON ; Sung-Il WOO ; Yong Ju LEE ; Jong Deok KIM ; Hyeon-Jong YANG ; Gwang Cheon JANG ;
Allergy, Asthma & Respiratory Disease 2025;13(1):3-11
Atopic dermatitis is the most common chronic inflammatory skin disease in children and adolescents. The Korean Academy of Pediatric Allergy and Respiratory Disease published the Atopic Dermatitis Treatment Guideline in 2008, which has been helpful in atopic dermatitis treatment until now. Various reports on the development and effectiveness of new drugs have suggested that there is a need to develop and revise old treatment guidelines. Part 1 aimed to provide evidence-based recommendations for skin care management and topical treatment for atopic dermatitis. Part 2 focuses on systemic treatment, novel therapeutics, and adjuvant therapy. The goal of this guideline is intended to assist front-line doctors treating pediatric and adolescent atopic dermatitis patients make safer, more effective, and more rational decisions regarding systemic treatment, novel therapeutics, and adjuvant therapy by providing evidence-based recommendations with a clear level of evidence and benefit regarding treatment.
10.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.

Result Analysis
Print
Save
E-mail