1.Development of a 3D-Printed Lithophane Breast Anthropomorphic Phantom for Dose Optimization in an Automatic Exposure Control System
Progress in Medical Physics 2024;35(4):125-134
Purpose:
This study aimed to develop a 3D-printed lithophane breast anthropomorphic phantom for optimizing the automatic exposure control (AEC) in a digital mammography system, thereby reducing radiation dose while maintaining high image quality.
Methods:
Craniocaudal breast radiograhic images from 72 patients, categorized as high-density and low-density by radiologists, were used to design the phantom. A digital lithophane technology was employed to create an anatomic breast plate, fabricated using a digital light processing 3D printer with resin. Polymenthylmethacrylate (PMMA) support thickness was adjusted incrementally until the exposure index and deviation index values approximated those of the American College of Radiology phantom. Phantom images were acquired across five AEC density levels (−6, −3, 0, 3, 6), and the optimal dose was determined as the lowest autoexposure mAs value with superior image quality. Two radiologists scored image quality on a 7-point Likert scale to identify the best configurations.
Results:
The optimal PMMA support thicknesses were determined as 3 cm for high-density and 4 cm for low-density breasts. The optimized AEC condition corresponded to the lowest density level (−6) with the least mAs value, maintaining excellent image quality. The use of the phantom resulted in a reduction of automatic exposure tube current by 39.4%–43.4% while producing images comparable to human breast radiographic images.
Conclusions
The developed 3D-printed lithophane breast anthropomorphic phantom effectively optimized AEC settings, reducing radiation dose and maintaining high-quality breast radiographic images. This study has the potential to enhance safety and diagnostic efficacy in digital mammography.
2.Development of a 3D-Printed Lithophane Breast Anthropomorphic Phantom for Dose Optimization in an Automatic Exposure Control System
Progress in Medical Physics 2024;35(4):125-134
Purpose:
This study aimed to develop a 3D-printed lithophane breast anthropomorphic phantom for optimizing the automatic exposure control (AEC) in a digital mammography system, thereby reducing radiation dose while maintaining high image quality.
Methods:
Craniocaudal breast radiograhic images from 72 patients, categorized as high-density and low-density by radiologists, were used to design the phantom. A digital lithophane technology was employed to create an anatomic breast plate, fabricated using a digital light processing 3D printer with resin. Polymenthylmethacrylate (PMMA) support thickness was adjusted incrementally until the exposure index and deviation index values approximated those of the American College of Radiology phantom. Phantom images were acquired across five AEC density levels (−6, −3, 0, 3, 6), and the optimal dose was determined as the lowest autoexposure mAs value with superior image quality. Two radiologists scored image quality on a 7-point Likert scale to identify the best configurations.
Results:
The optimal PMMA support thicknesses were determined as 3 cm for high-density and 4 cm for low-density breasts. The optimized AEC condition corresponded to the lowest density level (−6) with the least mAs value, maintaining excellent image quality. The use of the phantom resulted in a reduction of automatic exposure tube current by 39.4%–43.4% while producing images comparable to human breast radiographic images.
Conclusions
The developed 3D-printed lithophane breast anthropomorphic phantom effectively optimized AEC settings, reducing radiation dose and maintaining high-quality breast radiographic images. This study has the potential to enhance safety and diagnostic efficacy in digital mammography.
3.Development of a 3D-Printed Lithophane Breast Anthropomorphic Phantom for Dose Optimization in an Automatic Exposure Control System
Progress in Medical Physics 2024;35(4):125-134
Purpose:
This study aimed to develop a 3D-printed lithophane breast anthropomorphic phantom for optimizing the automatic exposure control (AEC) in a digital mammography system, thereby reducing radiation dose while maintaining high image quality.
Methods:
Craniocaudal breast radiograhic images from 72 patients, categorized as high-density and low-density by radiologists, were used to design the phantom. A digital lithophane technology was employed to create an anatomic breast plate, fabricated using a digital light processing 3D printer with resin. Polymenthylmethacrylate (PMMA) support thickness was adjusted incrementally until the exposure index and deviation index values approximated those of the American College of Radiology phantom. Phantom images were acquired across five AEC density levels (−6, −3, 0, 3, 6), and the optimal dose was determined as the lowest autoexposure mAs value with superior image quality. Two radiologists scored image quality on a 7-point Likert scale to identify the best configurations.
Results:
The optimal PMMA support thicknesses were determined as 3 cm for high-density and 4 cm for low-density breasts. The optimized AEC condition corresponded to the lowest density level (−6) with the least mAs value, maintaining excellent image quality. The use of the phantom resulted in a reduction of automatic exposure tube current by 39.4%–43.4% while producing images comparable to human breast radiographic images.
Conclusions
The developed 3D-printed lithophane breast anthropomorphic phantom effectively optimized AEC settings, reducing radiation dose and maintaining high-quality breast radiographic images. This study has the potential to enhance safety and diagnostic efficacy in digital mammography.
4.Development of a 3D-Printed Lithophane Breast Anthropomorphic Phantom for Dose Optimization in an Automatic Exposure Control System
Progress in Medical Physics 2024;35(4):125-134
Purpose:
This study aimed to develop a 3D-printed lithophane breast anthropomorphic phantom for optimizing the automatic exposure control (AEC) in a digital mammography system, thereby reducing radiation dose while maintaining high image quality.
Methods:
Craniocaudal breast radiograhic images from 72 patients, categorized as high-density and low-density by radiologists, were used to design the phantom. A digital lithophane technology was employed to create an anatomic breast plate, fabricated using a digital light processing 3D printer with resin. Polymenthylmethacrylate (PMMA) support thickness was adjusted incrementally until the exposure index and deviation index values approximated those of the American College of Radiology phantom. Phantom images were acquired across five AEC density levels (−6, −3, 0, 3, 6), and the optimal dose was determined as the lowest autoexposure mAs value with superior image quality. Two radiologists scored image quality on a 7-point Likert scale to identify the best configurations.
Results:
The optimal PMMA support thicknesses were determined as 3 cm for high-density and 4 cm for low-density breasts. The optimized AEC condition corresponded to the lowest density level (−6) with the least mAs value, maintaining excellent image quality. The use of the phantom resulted in a reduction of automatic exposure tube current by 39.4%–43.4% while producing images comparable to human breast radiographic images.
Conclusions
The developed 3D-printed lithophane breast anthropomorphic phantom effectively optimized AEC settings, reducing radiation dose and maintaining high-quality breast radiographic images. This study has the potential to enhance safety and diagnostic efficacy in digital mammography.
5.Development of a 3D-Printed Lithophane Breast Anthropomorphic Phantom for Dose Optimization in an Automatic Exposure Control System
Progress in Medical Physics 2024;35(4):125-134
Purpose:
This study aimed to develop a 3D-printed lithophane breast anthropomorphic phantom for optimizing the automatic exposure control (AEC) in a digital mammography system, thereby reducing radiation dose while maintaining high image quality.
Methods:
Craniocaudal breast radiograhic images from 72 patients, categorized as high-density and low-density by radiologists, were used to design the phantom. A digital lithophane technology was employed to create an anatomic breast plate, fabricated using a digital light processing 3D printer with resin. Polymenthylmethacrylate (PMMA) support thickness was adjusted incrementally until the exposure index and deviation index values approximated those of the American College of Radiology phantom. Phantom images were acquired across five AEC density levels (−6, −3, 0, 3, 6), and the optimal dose was determined as the lowest autoexposure mAs value with superior image quality. Two radiologists scored image quality on a 7-point Likert scale to identify the best configurations.
Results:
The optimal PMMA support thicknesses were determined as 3 cm for high-density and 4 cm for low-density breasts. The optimized AEC condition corresponded to the lowest density level (−6) with the least mAs value, maintaining excellent image quality. The use of the phantom resulted in a reduction of automatic exposure tube current by 39.4%–43.4% while producing images comparable to human breast radiographic images.
Conclusions
The developed 3D-printed lithophane breast anthropomorphic phantom effectively optimized AEC settings, reducing radiation dose and maintaining high-quality breast radiographic images. This study has the potential to enhance safety and diagnostic efficacy in digital mammography.
6.Reducing of Craniofacial Radiation Dose Using Automatic Exposure Control Technique in the 64 Multi-Detector Computed Tomography.
Youl Hun SEOUNG ; Yong Ok KIM ; Bo Young CHOE
Korean Journal of Medical Physics 2010;21(2):137-144
The purpose of this study was to evaluate the usefulness of reducing of craniofacial radiation dose using automatic exposure control (AEC) technique in the 64 multi-detector computed tomography (MDCT). We used SOMATOM Definition 64 multi-detector CT, and head of whole body phantom (KUPBU-50, Kyoto Kagaku CO. Ltd). The protocol were helical scan method with 120 kVp, 1 sec of rotation time, 5 mm of slice thickness and increment, 250 mm of FOV, 512x512 of matrix size, 64x0.625 mm of collimation, and 1 of pitch. The evaluation of dose reducing effect was compared the fixed tube current of 350 with AEC technique. The image quality was measured the noise using standard deviation of CT number. The range of craniofacial bone was to mentum end from calvaria apex, which devided three regions: calvaria~superciliary ridge (1 segment), superciliary ridge~acanthion (2 segment), and acanthion~mentum (3 segment). In the fixed tube current technique, CTDIvol was 57.7 mGy, DLP was 640.2 mGy.cm in the all regions. The AEC technique was showed that 1 segment were 30.7 mGy of CTDIvol, 340.7 mGy.cm of DLP, 2 segment were 46.5 mGy of CTDIvol, 515.0 mGy.cm of DLP, and 3 segment were 30.3 mGy of CTDIvol, 337.0 mGy.cm of DLP. The standard deviation of CT number was 2.622 with the fixed tube current technique and 3.023 with the AEC technique in the 1 segment, was 3.118 with the fixed tube current technique and 3.379 with the AEC technique in the 2 segment, was 2.670 with the fixed tube current technique and 3.186 with the AEC technique in the 3 segment. The craniofacial radiation dose using AEC Technique in the 64 MDCT was evaluated the usefulness of reducing for the eye, the parotid and thyroid with high radiation sensitivity particularly.
Chin
;
Eye
;
Head
;
Noise
;
Radiation Tolerance
;
Skull
;
Thyroid Gland
7.Evaluation on Protrusion of the Imaginary Prostate Volume Using Three-Dimensional Volume Rendering.
Youl Hun SEOUNG ; Yong Hyun JOO ; Jae Dong RHIM ; Bo Young CHOE
Korean Journal of Medical Physics 2009;20(4):208-215
This study is to compare the accuracy of evaluation regarding the volume of the prostate, which three-dimensional volume rendering was produced the shape of protrusion, by measuring two kinds of craniocaudal length from the top of the protrusion and from the exclusion of the protrusion as the starting points. For the imaginary protrusion prostate models, total of 10 models were roughly made by using devils-tongue jelly and changing each of the 10 ml of capacity from 10 ml to 100 ml. For the protrusion prostate models aimed at estimating the real volume, through 64 cannel computed tomography (CT) and 3.0 tesla magnetic resonance image (MRI) were conducted by planimetry technique from three-dimensional volume rendering. And then we performed to evaluate on significance of these volumes by wilcoxon signed rank test. Also the obtained volumes data by ellipsoid volume formula were measured the volume of protrusion prostate models two times with each method using the two kinds of craniocaudal length from top of the protrusion and from exclusion of the protrusion as the starting points. Finally, the significance of differences using wilcoxon signed rank test was evaluated between the real volume by planimetry technique and the measured volume by ellipsoid volume formula from three-dimensional volume rendering. The average of the protrusion length on the models was 0.90+/-0.18 mm in CT and was 0.75+/-0.11 mm in MRI. There were not statistically significant difference between MRI and CT from the volume of protrusion prostate models (p=0.414). In MRI (p=0.139) and CT (p=0.057), there were not statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from exclusion of the protrusion as the starting points. While, there were statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from top of the protrusion as the starting points in MRI (p=0.005) and CT (p=0.005). For the accurate measurement of the protrusion prostate models, the craniocaudal length of the prostate should be measured from the exclusion of the protrusion as the starting points.
Magnetic Resonance Spectroscopy
;
Prostate