1.Mechanisms of Bushen Tongluo Jiangzhuo Prescription in Improving Renal Fibrosis in Rats with Chronic Kidney Disease Based on PI3K/Akt/mTOR Signaling Pathway
Xincui BAO ; Baosheng ZHAO ; Lingling QIN ; Haiyan WANG ; Jing YANG ; You WANG ; Lijia WU ; Yujin LI ; Ming GAO ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):100-108
ObjectiveTo investigate the mechanisms by which Bushen Tongluo Jiangzhuo prescription improves renal fibrosis in rats with chronic kidney disease (CKD) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. MethodsSeventy specific pathogen-free (SPF) Sprague-Dawley (SD) rats were randomly divided into a control group (n=15) and a modeling group (n=55). Rats in the modeling group were administered a 2.5% adenine suspension at a dose of 200 mg·kg-1·d-1 by gavage for 4 weeks to establish a CKD model. Successfully modeled rats were randomly divided into a model group, an irbesartan group (20.25 mg·kg-1·d-1), and Bushen Tongluo Jiangzhuo prescription low-, medium-, and high-dose groups (5.82, 11.64, and 23.28 g·kg-1·d-1, respectively), with 10 rats in each group. Each group was administered an equal volume of physiological saline, the corresponding concentration of irbesartan, or Bushen Tongluo Jiangzhuo prescription by gavage for 12 weeks. Body weight and renal function indices were dynamically monitored. Serum creatinine (SCr), blood urea nitrogen (BUN), urine albumin-to-creatinine ratio (ACR), 24-hour urinary total protein (24 hUTP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured using an automatic biochemical analyzer. Renal histopathological changes were observed by hematoxylin-eosin (HE) and Masson staining. Immunohistochemistry (IHC) was used to detect the expression of PI3K, Akt, phosphorylated Akt (p-Akt), and mTOR in renal tissues. Western blot was performed to assess the protein expression of PI3K, p-Akt, Akt, phosphorylated mTOR (p-mTOR), and mTOR in renal tissues. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to determine the mRNA expression levels of PI3K, Akt, and mTOR in renal tissues. ResultsCompared with the model group, rats in the irbesartan group and the low-, medium-, and high-dose Bushen Tongluo Jiangzhuo prescription groups showed significantly decreased levels of SCr, BUN, ACR, 24 hUTP, IL-1β, IL-6, and TNF-α (P<0.01). AST levels were significantly increased (P<0.01), while no significant difference was observed in ALT levels. Histopathological examination revealed that, compared with the model group, renal tubular epithelial cell edema and necrosis and Bowman's capsule dilation were alleviated, inflammatory cell infiltration was reduced, and interstitial and glomerular fibrosis was markedly improved in all treatment groups, with the most pronounced effect observed in the high-dose Bushen Tongluo Jiangzhuo prescription group. Real-time PCR results showed that mRNA expression levels of PI3K, Akt, and mTOR were significantly downregulated in the high-dose group (P<0.01). IHC results demonstrated that PI3K and p-Akt expression levels in renal tissues were significantly decreased in the high-dose group (P<0.01). Western blot analysis further confirmed that the expression levels of PI3K, p-Akt/Akt, and p-mTOR/mTOR were significantly reduced in the high-dose group (P<0.01). ConclusionBushen Tongluo Jiangzhuo prescription improves renal function indices in CKD rats, reduces collagen deposition in renal tissues, and decreases serum inflammatory factor levels. Its protective effect on renal function may be achieved by activating autophagy through downregulation of the PI3K/Akt/mTOR signaling pathway, thereby alleviating renal fibrosis.
3.Cellular and Histopathological Characteristics of Ultrasonically Underdiagnosed 3/4a Thyroid Nodules.
Wu WEI-QI ; Xu CUN-BAO ; Li YOU-JIA ; Su CHUN-YANG ; Feng-Shun ZHANG ; Yi-Feng CHEN
Acta Academiae Medicinae Sinicae 2025;47(1):23-28
Objective To analyze the cellular and histopathological characteristics of underdiagnosed thyroid nodules of Chinese thyroid imaging reporting and data system(C-TIRADS) categories 3 and 4a,thus improving the understanding of these lesions. Methods The data of ultrasound and fine needle aspiration cytology were collected from 683 nodules diagnosed based on pathological evidence in 549 patients undergoing thyroid surgery.The cellular and histopathological characteristics of C-TIRADS 3 and 4a nodules were analyzed. Results Two hundred and sixty-eight nodules were classified as C-TIRADS category 3,including 236 benign nodules,12 low-risk ones,and 20 (7.46%) malignant ones.Two hundred and twenty-one nodules were classified as C-TIRADS category 4a,including 133 benign nodules,7 low-risk ones,and 81 (36.65%) malignant ones.The malignancy rates differed between C-TIRADS 3 and 4a nodules (χ2=58.93,P<0.001),and both were higher than the recommended malignancy rate in the guidelines for malignancy risk stratification of thyroid nodules (C-TIRADS) (both P<0.001).According to the pathological evidence,the underdiagnosed C-TIRADS 3/4a nodules were mainly papillary thyroid carcinoma,especially in patients with Hashimoto thyroiditis.There was not a consistent one-to-one match between each ultrasound result and each cytological classification of low-risk thyroid nodules.Conclusions When the malignant features in preoprative ultrasound imaging are atypical or absent,papillary thyroid carcinoma (especially with Hashimoto thyroiditis),follicular carcinoma,and medullary carcinoma are likely to be underdiagnosed as C-TIRADS 3 or 4a nodules.Therefore,efforts should be made to fully understand the cellular and pathological characteristics of these lesions.
Humans
;
Thyroid Nodule/diagnostic imaging*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Ultrasonography
;
Biopsy, Fine-Needle
;
Aged
;
Young Adult
;
Thyroid Neoplasms/diagnostic imaging*
;
Adolescent
4.Anti-SARS-CoV-2 activity of small molecule inhibitors of cathepsin L
Wen-wen ZHOU ; Bao-qing YOU ; Yi-fan ZHENG ; Shu-yi SI ; Yan LI ; Jing ZHANG
Acta Pharmaceutica Sinica 2024;59(3):600-607
The coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to serious worldwide economic burden. Due to the continuous emergence of variants, vaccines and monoclonal antibodies are only partial effective against infections caused by distinct strains of SARS-CoV-2. Therefore, it is still of great importance to call for the development of broad-spectrum and effective small molecule drugs to combat both current and future outbreaks triggered by SARS-CoV-2. Cathepsin L (CatL) cleaves the spike glycoprotein (S) of SARS-CoV-2, playing an indispensable role in enhancing virus entry into host cells. Therefore CatL is one of the ideal targets for the development of pan-coronavirus inhibitor-based drugs. In this study, a CatL enzyme inhibitor screening model was established based on fluorescein labeled substrate. Two CatL inhibitors IMB 6290 and IMB 8014 with low cytotoxicity were obtained through high-throughput screening, the half inhibition concentrations (IC50) of which were 11.53 ± 0.68 and 1.56 ± 1.10 μmol·L-1, respectively. SDS-PAGE and cell-cell fusion experiments confirmed that the compounds inhibited the hydrolysis of S protein by CatL in a concentration-dependent manner. Surface plasmon resonance (SPR) detection showed that both compounds exhibited moderate binding affinity with CatL. Molecular docking revealed the binding mode between the compound and the CatL active pocket. The pseudovirus experiment further confirmed the inhibitory effects of IMB 8014 on the S protein mediated entry process.
5.Establishment and application of a cell-based high-throughput screening model for TMPRSS2 inhibitors
Bao-qing YOU ; Wen-wen ZHOU ; Yan LI ; Jing ZHANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2024;59(12):3273-3281
Transmembrane serine protease 2 (TMPRSS2) is a cell surface protease widely present in the human body. It is involved in the infection of various viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and in the cell invasion, tumor growth and metastasis processes of prostate cancer. This study used Boc-Gln-Ala-Arg-AMC as the fluorescent substrate to determine the cleavage activity of TMPRSS2 towards SARS-CoV-2 S protein. Then cell-based screening model for TMPRSS2 inhibitors was established in Vero E6 cells overexpressing TMPRSS2 (Vero E6/TMPRSS2). Seven compounds exhibiting TMPRSS2 inhibitory activities with low toxicity were obtained through high-throughput screening (HTS) from natural and synthetic compound pure product library of National Center for Screening Novel Microbial Drugs. Surface plasmon resonance (SPR) has shown that the obtained inhibitors could bind to TMPRSS2 with moderate affinity in a dose dependent manner. Cell-cell fusion experiments have shown that the obtained inhibitors can inhibit the occurrence of S protein mediated cell-cell fusion by inhibiting TMPRSS2 cleavage of SARS-CoV-2 S protein in a concentration dependent manner. Preliminary pseudovirus experiment showed that the inhibitors may reduce the pseudovirus infection into Opti-HEK-293T-ACE2 cells to varying degrees. In a word, this study successfully established a cell-based HTS model for TMPRSS2 inhibitor and preliminarily confirmed that the seven screened inhibitors possessed
6.Expert consensus on implementation strategy of awake prone positioning for non-intubated patients in China (2023).
Yuanyuan MI ; Zheyi CAI ; Jing LIU ; Fei TIAN ; Liping YANG ; Lei BAO ; Shanbing HOU ; Su GU ; Li LI ; Xueli ZHOU ; Yun XU ; Shumei ZHANG ; Xiaoxia FU ; Xiaodi LI ; Chuansheng LI ; Liang SUN ; Xiaohong ZHANG ; Hong QI ; Shiying YUAN ; Liqun ZHU ; Haiyan HUANG ; You SHANG
Chinese Critical Care Medicine 2023;35(4):337-351
The awake prone position plays an important role in the treatment of hypoxemia and the improvement of respiratory distress symptoms in non-intubated patients. It is widely used in clinical practice because of its simple operation, safety, and economy. To enable clinical medical staff to scientifically and normatively implement prone position for awake patients without intubation, the committees of consensus formulation, guided by evidence-based methodology and Delphi method, conducted literature search, literature quality evaluation and evidence synthesis around seven topics, including indications and contraindications, evaluation, implementation, monitoring and safety management, termination time, complication prevention and health education of awake prone position. After two rounds of expert letter consultation, Expert consensus on implementation strategy of awake prone positioning for non-intubated patients in China (2023) was formulated, and provide guidance for clinical medical staff.
Humans
;
Consensus
;
Prone Position
;
Wakefulness
;
China
;
Dyspnea
7.The mechanism of "Trichosanthis Fructus-Allii Macrostemonis Bulbus" on phlegm and blood stasis syndrome-related cardiovascular diseases based on network pharmacology and experimental verification
Bo ZHANG ; Yu-ning LIANG ; You-li BAO ; Li ZHU ; Xin SUN ; Hong-fei WU
Acta Pharmaceutica Sinica 2023;58(6):1452-1463
This study aimed to investigate the mechanism of "Trichosanthis Fructus-Allii Macrostemonis Bulbus" (GX) on phlegm and blood stasis syndrome (PBSS) rats combining the methods of network pharmacology and experimental verification. Animal experiment ethical requirements were approved by the Ethical Committee Experimental Animal Center of Anhui University of Chinese Medicine (grant number: AHUCM-rats-2021070). Based on the HPLC-Q-TOF-MS analysis and database, 69 chemical constituents of GX and 163 targets of GX for the treatment of phlegm and blood stasis-related cardiovascular diseases were obtained. Then, key targets such as serine/threonine kinase 1 (Akt1), tumor necrosis factor (TNF), interleukin 6 (IL6), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (Tp53) were screened. Pathway analysis showed that the targets of GX in the treatment of phlegm and blood stasis-relate cardiovascular diseases were mainly involved in PI3K/Akt signaling pathway, sphingolipid metabolism, platelet activation, hypoxia inducible factor-1 (HIF-1), ras-proximate-1 (rap1) and other signaling pathways. In addition, molecular docking analysis showed that apigenin, cucurbitacin D, linolenic acid and kaempferol and other key components had potential binding ability with Akt1, TNF, IL6, VEGFA and Tp53. In the animal experiments, compared to the phlegm and blood stasis syndrome group, GX could significantly improve the traditional Chinese medicine syndrome score, blood lipid, vascular endothelial structure disorders and reduce serum endothelin-1 (ET-1) level, increase serum nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) levels, which could restore aortic endothelial function. In addition, the expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in aorta could be significantly reduced, which could improve the vascular endothelial injury of aorta. Western blot revealed that GX could significantly decrease the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and Akt in aorta. This study revealed the mechanism of GX in treatment of phlegm and blood stasis-relate cardiovascular diseases is consistent with the characteristics of multiple ingredients, multiple targets and multiple pathways. In addition, this study also clarified that the reversal of pathological of phlegm and blood stasis syndrome rats may be related to GX inhibiting PI3K/Akt signaling pathway, which could improve vascular inflammation and vascular endothelial function injury.
8."Trichosanthis Fructus-Allii Macrostemonis Bulbus" combination inhibits NLRP3 inflammasome activation and reduces inflammatory response in RAW264.7 macrophage by inducing autophagy.
You-Li BAO ; Yin CAO ; Hong-Fei WU
China Journal of Chinese Materia Medica 2023;48(10):2820-2828
This study aims to explore the effect of "Trichosanthis Fructus-Allii Macrostemonis" combination(GX) on the activation of NOD-, LRR-, and pyrin domain-containing protein 3(NLRP3) inflammasome, the release of inflammatory cytokines, and the level of autophagy in RAW264.7 macrophage damaged by lipopolysaccharide(LPS), and the mechanism of GX against inflammatory response in macrophages. To be specific, LPS was used to induce the injury of RAW264.7 cells. Cell Counting Kit-8(CCK-8) assay was employed to measure the survival rate of cells, and Western blot to detect the protein expression of NLRP3, apoptosis-associated speck-like protein(ASC), cysteine-aspartic acid protease(caspase)-1, interleukin(IL)-18, IL-1β, microtubule-associated protein light chain 3(LC3)-Ⅱ, and selective autophagy junction protein p62/sequestosome 1 in RAW264.7 macrophages. ELISA was used to measure the levels of IL-18 and IL-1β in RAW264.7 cells. Transmission electron microscopy was applied to observe the number of autophagosomes in RAW264.7 cells. Immunofulourescence staining was used to detect the expression of LC3-Ⅱ and p62 in RAW264.7 cells. The result showed that GX significantly reduced the protein expression of NLRP3, ASC, and caspase-1 in RAW264.7 cells, significantly increased the protein expression of LC3Ⅱ, decreased the expression of p62, significantly inhibited the secretion of IL-18 and IL-1β, significantly increased the number of autophagosomes, significantly enhanced the immunofluorescence of LC3Ⅱ, and reduced the immunofluorescence of p62. Furthermore, 3-methyladenine(3-MA) could reverse the inhibitory effect of GX on NLRP3, ASC, and caspase-1 and reduce the release of IL-18 and IL-1β. In summary, GX can increase of the autophagy activity of RAW264.7 and inhibit the activation of NLRP3 inflammasome, thereby reducing the release of inflammatory cytokines and suppressing inflammatory response in macrophages.
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Interleukin-18/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophages
;
Cytokines/metabolism*
;
Caspase 1/metabolism*
;
Autophagy
;
Interleukin-1beta/metabolism*
9.Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization.
Siyue ZHANG ; Fangyuan XIE ; Kaichun LI ; He ZHANG ; You YIN ; Yuan YU ; Guangzhao LU ; Shihao ZHANG ; Yan WEI ; Ke XU ; Yan WU ; Hong JIN ; Lan XIAO ; Leilei BAO ; Can XU ; Yulin LI ; Ying LU ; Jie GAO
Acta Pharmaceutica Sinica B 2022;12(7):3124-3138
Tumor-associated macrophages (TAMs), one of the dominating constituents of tumor microenvironment, are important contributors to cancer progression and treatment resistance. Therefore, regulation of TAMs polarization from M2 phenotype towards M1 phenotype has emerged as a new strategy for tumor immunotherapy. Herein, we successfully initiated antitumor immunotherapy by inhibiting TAMs M2 polarization via autophagy intervention with polyethylene glycol-conjugated gold nanoparticles (PEG-AuNPs). PEG-AuNPs suppressed TAMs M2 polarization in both in vitro and in vivo models, elicited antitumor immunotherapy and inhibited subcutaneous tumor growth in mice. As demonstrated by the mRFP-GFP-LC3 assay and analyzing the autophagy-related proteins (LC3, beclin1 and P62), PEG-AuNPs induced autophagic flux inhibition in TAMs, which is attributed to the PEG-AuNPs induced lysosome alkalization and membrane permeabilization. Besides, TAMs were prone to polarize towards M2 phenotype following autophagy activation, whereas inhibition of autophagic flux could reduce the M2 polarization of TAMs. Our results revealed a mechanism underlying PEG-AuNPs induced antitumor immunotherapy, where PEG-AuNPs reduce TAMs M2 polarization via induction of lysosome dysfunction and autophagic flux inhibition. This study elucidated the biological effects of nanomaterials on TAMs polarization and provided insight into harnessing the intrinsic immunomodulation capacity of nanomaterials for effective cancer treatment.
10.A 10-year retrospective analysis of spectrums and treatment options of orthostatic intolerance and sitting intolerance in children.
Ya Xi CUI ; Jun Bao DU ; Qing You ZHANG ; Ying LIAO ; Ping LIU ; Yu Li WANG ; Jian Guang QI ; Hui YAN ; Wen Rui XU ; Xue Qin LIU ; Yan SUN ; Chu Fan SUN ; Chun Yu ZHANG ; Yong Hong CHEN ; Hong Fang JIN
Journal of Peking University(Health Sciences) 2022;54(5):954-960
OBJECTIVE:
To analyze the disease spectrums underlying orthostatic intolerance (OI) and sitting intolerance (SI) in Chinese children, and to understand the clinical empirical treatment options.
METHODS:
The medical records including history, physical examination, laboratory examination, and imagological examination of children were retrospectively studied in Peking University First Hospital from 2012 to 2021. All the children who met the diagnostic criteria of OI and SI were enrolled in the study. The disease spectrums underlying OI and SI and treatment options during the last 10 years were analyzed.
RESULTS:
A total of 2 110 cases of OI and SI patients were collected in the last 10 years, including 943 males (44.69%) and 1 167 females (55.31%) aged 4-18 years, with an average of (11.34±2.84) years. The overall case number was in an increasing trend over the year. In the OI spectrum, postural tachycardia syndrome (POTS) accounted for 826 cases (39.15%), followed by vasovagal syncope (VVS) (634 cases, 30.05%). The highest proportion of SI spectrum was sitting tachycardia (STS) (8 cases, 0.38%), followed by sitting hypertension (SHT) (2 cases, 0.09%). The most common comorbidity of OI and SI was POTS coexisting with STS (36 cases, 1.71%). The highest proportion of treatment options was autonomic nerve function exercise (757 cases, 35.88%), followed by oral rehydration salts (ORS) (687 cases, 32.56%), metoprolol (307 cases, 14.55%), midodrine (142 cases, 6.73%), ORS plus metoprolol (138 cases, 6.54%), and ORS plus midodrine (79 cases, 3.74%). The patients with POTS coexisting with VVS were more likely to receive pharmacological intervention than the patients with POTS and the patients with VVS (41.95% vs. 30.51% vs. 28.08%, χ2= 20.319, P < 0.01), but there was no significant difference in the proportion of treatment options between the patients with POTS and the patients with VVS.
CONCLUSION
POTS and VVS in children are the main underlying diseases of OI, while SI is a new disease discovered recently. The number of children with OI and SI showed an increasing trend. The main treatment methods are autonomic nerve function exercise and ORS. Children with VVS coexisting with POTS were more likely to take pharmacological treatments than those with VVS or POTS only.
Child
;
Electrolytes
;
Female
;
Humans
;
Male
;
Metoprolol
;
Midodrine
;
Orthostatic Intolerance/therapy*
;
Postural Orthostatic Tachycardia Syndrome/diagnosis*
;
Retrospective Studies
;
Salts
;
Sitting Position
;
Syncope, Vasovagal/diagnosis*
;
Tilt-Table Test

Result Analysis
Print
Save
E-mail