1.Knowledge map and visualization analysis of pulmonary nodule/early-stage lung cancer prediction models
Yifeng REN ; Qiong MA ; Hua JIANG ; Xi FU ; Xueke LI ; Wei SHI ; Fengming YOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):100-107
Objective To reveal the scientific output and trends in pulmonary nodules/early-stage lung cancer prediction models. Methods Publications on predictive models of pulmonary nodules/early lung cancer between January 1, 2002 and June 3, 2023 were retrieved and extracted from CNKI, Wanfang, VIP and Web of Science database. CiteSpace 6.1.R3 and VOSviewer 1.6.18 were used to analyze the hotspots and theme trends. Results A marked increase in the number of publications related to pulmonary nodules/early-stage lung cancer prediction models was observed. A total of 12581 authors from 2711 institutions in 64 countries/regions published 2139 documents in 566 academic journals in English. A total of 282 articles from 1256 authors were published in 176 journals in Chinese. The Chinese and English journals which published the most pulmonary nodules/early-stage lung cancer prediction model-related papers were Journal of Clinical Radiology and Frontiers in Oncology, respectively. Chest was the most frequently cited journal. China and the United States were the leading countries in the field of pulmonary nodules/early-stage lung cancer prediction models. The institutions represented by Fudan University had significant academic influence in the field. Analysis of keywords revealed that multi-omics, nomogram, machine learning and artificial intelligence were the current focus of research. Conclusion Over the last two decades, research on risk-prediction models for pulmonary nodules/early-stage lung cancer has attracted increasing attention. Prognosis, machine learning, artificial intelligence, nomogram, and multi-omics technologies are both current hotspots and future trends in this field. In the future, in-depth explorations using different omics should increase the sensitivity and accuracy of pulmonary nodules/early-stage lung cancer prediction models. More high-quality future studies should be conducted to validate the efficacy and safety of pulmonary nodules/early-stage lung cancer prediction models further and reduce the global burden of lung cancer.
2.Recognition of breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine syndrome elements based on electronic nose combined with machine learning: An observational study in a single center
Shiyan TAN ; Qiong ZENG ; Hongxia XIANG ; Qian WANG ; Xi FU ; Jiawei HE ; Liting YOU ; Qiong MA ; Fengming YOU ; Yifeng REN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):185-193
Objective To explore the recognition capabilities of electronic nose combined with machine learning in identifying the breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine (TCM) syndrome elements. Methods The study design was a single-center observational study. General data and four diagnostic information were collected from 108 patients with pulmonary nodules admitted to the Department of Cardiothoracic Surgery of Hospital of Chengdu University of TCM from April 2023 to March 2024. The patients' TCM disease location and nature distribution characteristics were analyzed using the syndrome differentiation method. The Cyranose 320 electronic nose was used to collect the odor profiles of oral exhalation, and five machine learning algorithms including random forest (RF), K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and eXtreme gradient boosting (XGBoost) were employed to identify the exhaled breath profiles of benign and malignant pulmonary nodules and different TCM syndromes. Results (1) The common disease locations in pulmonary nodules were ranked in descending order as liver, lung, and kidney; the common disease natures were ranked in descending order as Yin deficiency, phlegm, dampness, Qi stagnation, and blood deficiency. (2) The electronic nose combined with the RF algorithm had the best efficacy in identifying the exhaled breath profiles of benign and malignant pulmonary nodules, with an AUC of 0.91, accuracy of 86.36%, specificity of 75.00%, and sensitivity of 92.85%. (3) The electronic nose combined with RF, LR, or XGBoost algorithms could effectively identify the different TCM disease locations and natures of pulmonary nodules, with classification accuracy, specificity, and sensitivity generally exceeding 80.00%.Conclusion Electronic nose combined with machine learning not only has the potential capabilities to differentiate the benign and malignant pulmonary nodules, but also provides new technologies and methods for the objective diagnosis of TCM syndromes in pulmonary nodules.
3.Research progress on the structural modification of isosteviol and the biological activities of its derivatives
Li-jun ZHAO ; You-fu YANG ; Tong-sheng WANG ; Yan-li ZHANG ; Ya WU
Acta Pharmaceutica Sinica 2025;60(1):22-36
Isosteviol is a tetracyclic diterpenoid compound obtained by hydrolysis of natural stevia glycoside under acidic conditions. It has many pharmacological activities, such as anti-tumor, hypoglycemic, anti-inflammatory and antibacterial. Due to its low water solubility, low activity and low bioavailability, isosteviol has poor performance. In order to overcome these shortcomings, scholars have obtained a large number of isosteviol derivatives with novel structures and excellent activity. In this paper, we review the recent progress in the research on the structure modification, biological activity, structure-activity relationship and microbial transformation of isosteviol, in order to provide a reference for the development of new drugs of isosteviol and its derivatives.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
7.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
8.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
9.Study on the correlation between the distribution of traditional Chinese medicine syndrome elements and salivary microbiota in patients with pulmonary nodules
Hongxia XIANG ; iawei HE ; Shiyan TAN ; Liting YOU ; Xi FU ; Fengming YOU ; Wei SHI ; Qiong MA ; Yifeng REN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):608-618
Objective To analyze the differences in distribution of traditional Chinese medicine (TCM) syndrome elements and salivary microbiota between the individuals with pulmonary nodules and those without, and to explore the potential correlation between the distribution of TCM syndrome elements and salivary microbiota in patients with pulmonary nodules. Methods We retrospectively recruited 173 patients with pulmonary nodules (PN) and 40 healthy controls (HC). The four diagnostic information was collected from all participants, and syndrome differentiation method was used to analyze the distribution of TCM syndrome elements in both groups. Saliva samples were obtained from the subjects for 16S rRNA high-throughput sequencing to obtain differential microbiota and to explore the correlation between TCM syndrome elements and salivary microbiota in the evolution of the pulmonary nodule disease. Results The study found that in the PN group, the primary TCM syndrome elements related to disease location were the lung and liver, and the primary TCM syndrome elements related to disease nature were yin deficiency and phlegm. In the HC group, the primary TCM syndrome elements related to disease location were the lung and spleen, and the primary TCM syndrome elements related to disease nature were dampness and qi deficiency. There were differences between the two groups in the distribution of TCM syndrome elements related to disease location (lung, liver, kidney, exterior, heart) and disease nature (yin deficiency, phlegm, qi stagnation, qi deficiency, dampness, blood deficiency, heat, blood stasis) (P<0.05). The species abundance of the salivary microbiota was higher in the PN group than that in the HC group (P<0.05), and there was significant difference in community composition between the two groups (P<0.05). Correlation analysis using multiple methods, including Mantel test network heatmap analysis and Spearman correlation analysis and so on, the results showed that in the PN group, Prevotella and Porphyromonas were positively correlated with disease location in the lung, and Porphyromonas and Granulicatella were positively correlated with disease nature in yin deficiency (P<0.05). Conclusion The study concludes that there are notable differences in the distribution of TCM syndrome elements and the species abundance and composition of salivary microbiota between the patients with pulmonary nodules and the healthy individuals. The distinct external syndrome manifestations in patients with pulmonary nodules, compared to healthy individuals, may be a cascade event triggered by changes in the salivary microbiota. The dual correlation of Porphyromonas with both disease location and nature suggests that changes in its abundance may serve as an objective indicator for the improvement of symptoms in patients with yin deficiency-type pulmonary nodules.
10.Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery.
Ming XU ; Wenhao ZHU ; Siyu HOU ; Hongzhi XU ; Jingwen XIA ; Liyu LIN ; Hao FU ; Mingyu YOU ; Jiafeng WANG ; Zhi XIE ; Xiaohong WEN ; Yingwei WANG
Chinese Medical Journal 2025;138(17):2170-2179
BACKGROUND:
Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery.
METHODS:
PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed.
RESULTS:
PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.840. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805-0.858) and a Brier score of 0.069, followed by Logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically significantly lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model.
CONCLUSIONS:
The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes.
TRIAL REGISTRATION
ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj=128279 .
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Algorithms
;
Lung Diseases/etiology*
;
Machine Learning
;
Neurosurgical Procedures/adverse effects*
;
Postoperative Complications/diagnosis*
;
Risk Factors
;
ROC Curve

Result Analysis
Print
Save
E-mail