1.Reasons for Diagnostic Failure in Forty-Five Consecutive Mucosal Cutting Biopsy Examinations of Gastric Subepithelial Tumors
Yoshiko NAKANO ; Toshitatsu TAKAO ; Yoshinori MORITA ; Shinwa TANAKA ; Takashi TOYONAGA ; Eiji UMEGAKI ; Yuzo KODAMA
Clinical Endoscopy 2020;53(5):575-582
Background/Aims:
Mucosal cutting biopsy (MCB) is useful for the histopathological diagnosis of gastric subepithelial tumors (SETs). However, there is little information on cases in which MCB did not establish a diagnosis. In the current study, we aimed to investigate the characteristics of cases in which MCB was unsuccessful.
Methods:
Cases in which MCB was used to histopathologically diagnose gastric SETs at Kobe University Hospital between August 2012 and October 2018 were retrospectively reviewed.
Results:
Forty-five cases in which MCB was used to diagnose 43 gastric SETs in 43 patients were analyzed. The median tumor size was 20 mm (range, 8–50 mm). Pathological examinations resulted in definitive and suspected diagnoses and no diagnosis in 29 (gastrointestinal stromal tumor: n=17, leiomyoma: n=7, aberrant pancreas: n=3, others: n=2), 6, and 10 cases, respectively. Failure to expose the tumor according to retrospective examinations of endoscopic images was significantly associated with no diagnosis. Other possible explanations included a less elevated tumor, biopsy of the surrounding field instead of the tumor due to the mobility, and poor endoscope maneuverability due to the tumor being close to the cardia.
Conclusions
Clear exposure of gastric SETs during MCB may improve the diagnostic rate of such examinations.
2.¹²³I-Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice
Atushi NAKANO ; Hidekazu KAWASHIMA ; Yoshinori MIYAKE ; Tsutomu ZENIYA ; Akihide YAMAMOTO ; Kazuhiro KOSHINO ; Takashi TEMMA ; Tetsuya FUKUDA ; Yoshiko FUJITA ; Akemi KAKINO ; Shigehiko KANAYA ; Tatsuya SAWAMURA ; Hidehiro IIDA
Nuclear Medicine and Molecular Imaging 2018;52(2):144-153
PURPOSE:
Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice.
METHODS:
We synthesized ¹²³I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the ¹²³I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of ¹²³I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of ¹²³I-oxLDL in serum was assessed by radio-HPLC.
RESULTS:
The cellular uptakes of ¹²³I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of ¹²³I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min postinjection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining ¹²³I-oxLDL or its metabolites in the blood.
CONCLUSION
¹²³I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL.
3.¹²³I-Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice
Atushi NAKANO ; Hidekazu KAWASHIMA ; Yoshinori MIYAKE ; Tsutomu ZENIYA ; Akihide YAMAMOTO ; Kazuhiro KOSHINO ; Takashi TEMMA ; Tetsuya FUKUDA ; Yoshiko FUJITA ; Akemi KAKINO ; Shigehiko KANAYA ; Tatsuya SAWAMURA ; Hidehiro IIDA
Nuclear Medicine and Molecular Imaging 2018;52(2):144-153
PURPOSE: Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice.METHODS: We synthesized ¹²³I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the ¹²³I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of ¹²³I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of ¹²³I-oxLDL in serum was assessed by radio-HPLC.RESULTS: The cellular uptakes of ¹²³I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of ¹²³I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min postinjection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining ¹²³I-oxLDL or its metabolites in the blood.CONCLUSION: ¹²³I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL.
Abdomen
;
Animals
;
Atherosclerosis
;
CHO Cells
;
Chromatography, High Pressure Liquid
;
Cricetinae
;
Fluorescence
;
Head Kidney
;
Heart
;
Inflammation
;
Injections, Intravenous
;
Iodine
;
Kinetics
;
Lipoproteins
;
Liver
;
Lung
;
Methods
;
Mice
;
Radioactivity
;
Spleen
;
Stomach
;
Thyroid Gland
;
Urinary Bladder