1.Ictal Focus on the Bialateral Claustrum in a Case of Insular Seizure Manifesting as Status Epilepticus.
Soochul PARK ; Ji Yoon KIM ; Hyung Jun PARK ; Yoseob WON ; Yeung Yeuob KIM ; Hae Jeong PARK ; Jong Doo LEE
Journal of the Korean Neurological Association 2006;24(4):372-377
Insular lobe seizure (ILS) is very rare and ictal focus has not been documented by neuroimaging studies. Clinical characteristics consist of clearly preserved consciousness, visceral sensation, somatomotor symptoms, and dysphonic or dysarthric speech. We report a 34-year-old female with ILS, manifesting as first onset status epilepticus. SISCOM and SPM analysis through brain MRI and 18F FDG PET-CT reveals ictal focus on the bilateral claustrum, which has a close relationship with insula anatomically. This is the first case report in Korea.
Adult
;
Basal Ganglia*
;
Brain
;
Consciousness
;
Female
;
Humans
;
Korea
;
Magnetic Resonance Imaging
;
Neuroimaging
;
Seizures*
;
Sensation
;
Status Epilepticus*
2.A Case of Neurolymphomatosis Relapsed as Mononeuropathy Multiplex after Hematologic Remission.
Dong Hyun LEE ; Bum Chun SUH ; Yoseob WON ; Dong Bum SONG ; Jinkwon KIM ; Il Nam SUNWOO ; Seung Min KIM
Journal of the Korean Neurological Association 2006;24(6):601-604
Neurolymphomatosis, which is defined as a peripheral nerve infiltration of lymphoma, is an infrequent complication of systemic lymphoma and the isolated involvement of the peripheral nerve as a sign of recurrence is very rare. Here, we report a case with neurolymphomatosis presented as a mononeuropathy multiplex and is the first reported case in Korea. With potent chemotherapy, the blood-nerve barrier may have a critical role in the isolated recurrence of lymphoma in the peripheral nervous system.
Animals
;
Blood-Nerve Barrier
;
Drug Therapy
;
Korea
;
Lymphoma
;
Lymphoma, B-Cell
;
Marek Disease*
;
Mononeuropathies*
;
Peripheral Nerves
;
Peripheral Nervous System
;
Recurrence
3.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
4.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
5.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
6.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.