1.Evaluation of the mechanical properties and clinical efficacy of biphasic calcium phosphate-added collagen membrane in ridge preservation
Jung-Tae LEE ; Yoonsub LEE ; Dajung LEE ; Yusang CHOI ; Jinyoung PARK ; Sungtae KIM
Journal of Periodontal & Implant Science 2020;50(4):238-250
Purpose:
This study aimed to evaluate the biocompatibility and the mechanical properties of ultraviolet (UV) cross-linked and biphasic calcium phosphate (BCP)-added collagen membranes and to compare the clinical results of ridge preservation to those obtained using chemically cross-linked collagen membranes.
Methods:
The study comprised an in vitro test and a clinical trial for membrane evaluation. BCPadded collagen membranes with UV cross-linking were prepared. In the in vitro test, scanning electron microscopy, a collagenase assay, and a tensile strength test were performed. The clinical trial involved 14 patients undergoing a ridge preservation procedure. All participants were randomly divided into the test group, which received UV cross-linked membranes (n=7), and the control group, which received chemically cross-linked membranes (n=7). BCP bone substitutes were used for both the test group and the control group. Cone-beam computed tomography (CBCT) scans were performed and alginate impressions were taken 1 week and 3 months after surgery. The casts were scanned via an optical scanner to measure the volumetric changes. The results were analyzed using the nonparametric Mann-Whitney U test.
Results:
The fastest degradation rate was found in the collagen membranes without the addition of BCP. The highest enzyme resistance and the highest tensile strength were found when the collagen-to-BCP ratio was 1:1. There was no significant difference in dimensional changes in the 3-dimensional modeling or CBCT scans between the test and control groups in the clinical trial (P>0.05).
Conclusions
The addition of BCP and UV cross-linking improved the biocompatibility and the mechanical strength of the membranes. Within the limits of the clinical trial, the sites grafted using BCP in combination with UV cross-linked and BCP-added collagen membranes (test group) did not show any statistically significant difference in terms of dimensional change compared with the control group.
2.Efficacy of salivary versus subgingival bacterial sampling for the detection and quantification of periodontal pathogens
Yoonsub LEE ; Yoojin HONG ; Bome KIM ; Dajung LEE ; Sungtae KIM ; In-chul RHYU
Journal of Periodontal & Implant Science 2020;50(6):358-367
Purpose:
The aim of this study was to investigate the efficacy and validity of subgingival bacterial sampling using a retraction cord, and to evaluate how well this sampling method reflected changes in periodontal conditions after periodontal therapy.
Methods:
Based on clinical examinations, 87 subjects were divided into a healthy group (n=40) and a periodontitis group (n=47). Clinical measurements were obtained from all subjects including periodontal probing depth (PD), bleeding on probing (BOP), clinical attachment loss (CAL), and the plaque index. Saliva and gingival crevicular fluid (GCF) as a subgingival bacterial sample were sampled before and 3 months after periodontal therapy. The salivary and subgingival bacterial samples were analyzed by reverse-transcription polymerase chain reaction to quantify the following 11 periodontal pathogens: Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Tannerella forsythus (Tf), Treponema denticola (Td), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn), Pavimonas micra (Pm), Campylobacter rectus (Cr), Prevotella nigrescens (Pn), Eikenella corrodens (Ec), and Eubacterium nodatum (En).
Results:
Non-surgical periodontal therapy resulted in significant decreases in PD (P<0.01), CAL (P<0.01), and BOP (P<0.05) after 3 months. Four species (Pg, Tf, Pi, and Pm) were significantly more abundant in both types of samples in the periodontitis group than in the healthy group. After periodontal therapy, Cr was the only bacterium that showed a statistically significant decrease in saliva, whereas statistically significant decreases in Cr, Pg, and Pn were found in GCF.
Conclusions
Salivary and subgingival bacterial sampling with a gingival retraction cord were found to be equivalent in terms of their accuracy for differentiating periodontitis, but GCF reflected changes in bacterial abundance after periodontal therapy more sensitively than saliva.