1.Analysis of Breeding and Application Data for Laboratory Cats
Xiansheng WU ; Wei HUANG ; Yongfen LIANG ; Hui DENG ; Yonghuan ZHAI ; Jiajun YANG ; Ganquan HUANG ; Gang WANG
Laboratory Animal and Comparative Medicine 2024;44(4):428-435
Objective To cultivate and breed laboratory cats in conventional laboratory animal facilities, collect background data on laboratory cats, and compare them with purchased domestic cats to assess the feasibility of breeding laboratory cats. Methods Indigenous cat breeds were introduced for reproduction and population expansion under conventional laboratory environment, with recording of kitten survival rates and growth curves. Indicators of 20 laboratory cats of F1 generation (half male and half female), including complete blood count, blood biochemistry, organ mass, organ coefficient, heart rate, and blood pressure, were detected and comparisons between sexes were made. Blood pressure values and sensitivity to histamine of these cats were measured using depressor substance detection method in the Pharmacopoeia of the People's Republic of China-Four Parts: 2020, and were compared with the data from 173 concurrently purchased domestic cats. Results Laboratory cats adapted well to the environment of conventional laboratory facilities, with a survival rate of 77.08% of kittens at 8 weeks of age. Red blood cell count, hemoglobin content, mean corpuscular hemoglobin concentration, and hematocrit in male laboratory cats were significantly higher than those in females (P<0.01), while the mean corpuscular volume in males was significantly lower than that in females (P<0.01). The levels of serum alanine aminotransferase, total bilirubin, creatinine, triacylglycerol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in male laboratory cats were significantly higher than those in females (P<0.05 or P<0.01), while cholesterol, globulin, total protein, and the albumin-globulin ratio were significantly lower in males (P<0.01). The liver coefficient in male laboratory cats was significantly lower than that in female cats (P<0.05), while the kidney coefficient was significantly higher (P<0.05). The spleen-brain and kidney-brain ratios were significantly higher in males compared to females(P<0.05 or P<0.01). No significant differences were found in heart rate, systolic pressure, diastolic pressure, mean blood pressure, or sensitivity to histamine between male and female laboratory cats (P>0.05). Compared to laboratory cats, purchased domestic cats had significantly higher heart rate, systolic pressure, and mean blood pressure (P<0.01), and the magnitude of blood pressure changes induced by medium and high doses of histamine was significantly reduced (P<0.05 or P<0.01). Conclusion It is feasible to breed laboratory cats in conventional laboratory animal facilities. The accuracy of experimental results can be improved by using laboratory cats with clear and standardized background data.