1.Variations of Resting-State EEG-Based Functional Networks in Brain Maturation From Early Childhood to Adolescence
Yoon Gi CHUNG ; Yonghoon JEON ; Ryeo Gyeong KIM ; Anna CHO ; Hunmin KIM ; Hee HWANG ; Jieun CHOI ; Ki Joong KIM
Journal of Clinical Neurology 2022;18(5):581-593
Background:
and Purpose Alterations in human brain functional networks with maturation have been explored extensively in numerous electroencephalography (EEG) and functional magnetic resonance imaging studies. It is known that the age-related changes in the functional networks occurring prior to adulthood deviate from ordinary trajectories of networkbased brain maturation across the adult lifespan.
Methods:
This study investigated the longitudinal evolution of resting-state EEG-based functional networks from early childhood to adolescence among 212 pediatric patients (age 12.2± 3.5 years, range 4.4–17.9) in 6 frequency bands using 8 types of functional connectivity measures in the amplitude, frequency, and phase domains.
Results:
Electrophysiological aspects of network-based pediatric brain maturation were characterized by increases in both functional segregation and integration up to middle adolescence. EEG oscillations in the upper alpha band reflected the age-related increases in mean node strengths and mean clustering coefficients and a decrease in the characteristic path lengths better than did those in the other frequency bands, especially for the phase-domain functional connectivity. The frequency-band-specific age-related changes in the global network metrics were influenced more by volume-conduction effects than by the domain specificity of the functional connectivity measures.
Conclusions
We believe that this is the first study to reveal EEG-based functional network properties during preadult brain maturation based on various functional connectivity measures. The findings potentially have clinical applications in the diagnosis and treatment of age-related brain disorders.
2.Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(3):327-340
Purpose:
Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.
Materials and Methods:
We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).
Results:
ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%–88.47%), dysplasia (88.31%; 83.24%– 93.39%), and benign lesions (83.12%; 77.20%–89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%– 93.84%) and 91.43% (86.79%–96.07%), respectively, compared with an accuracy of 60.71% (52.62%–68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%–91.27%), 90.54% (87.21%–93.87%), and 88.85% (85.27%–92.44%), respectively.
Conclusions
ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.
3.Erratum: Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(4):480-
4.Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(3):327-340
Purpose:
Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.
Materials and Methods:
We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).
Results:
ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%–88.47%), dysplasia (88.31%; 83.24%– 93.39%), and benign lesions (83.12%; 77.20%–89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%– 93.84%) and 91.43% (86.79%–96.07%), respectively, compared with an accuracy of 60.71% (52.62%–68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%–91.27%), 90.54% (87.21%–93.87%), and 88.85% (85.27%–92.44%), respectively.
Conclusions
ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.
5.Erratum: Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(4):480-
6.Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions
Chaithanya CHELAKKOT ; Youngwoo CHOI ; Dae Kyum KIM ; Hyun T PARK ; Jaewang GHIM ; Yonghoon KWON ; Jinseong JEON ; Min Seon KIM ; Young Koo JEE ; Yong S GHO ; Hae Sim PARK ; Yoon Keun KIM ; Sung H RYU
Experimental & Molecular Medicine 2018;50(2):e450-
The gut microbiota has an important role in the gut barrier, inflammation and metabolic functions. Studies have identified a close association between the intestinal barrier and metabolic diseases, including obesity and type 2 diabetes (T2D). Recently, Akkermansia muciniphila has been reported as a beneficial bacterium that reduces gut barrier disruption and insulin resistance. Here we evaluated the role of A. muciniphila-derived extracellular vesicles (AmEVs) in the regulation of gut permeability. We found that there are more AmEVs in the fecal samples of healthy controls compared with those of patients with T2D. In addition, AmEV administration enhanced tight junction function, reduced body weight gain and improved glucose tolerance in high-fat diet (HFD)-induced diabetic mice. To test the direct effect of AmEVs on human epithelial cells, cultured Caco-2 cells were treated with these vesicles. AmEVs decreased the gut permeability of lipopolysaccharide-treated Caco-2 cells, whereas Escherichia coli-derived EVs had no significant effect. Interestingly, the expression of occludin was increased by AmEV treatment. Overall, these results imply that AmEVs may act as a functional moiety for controlling gut permeability and that the regulation of intestinal barrier integrity can improve metabolic functions in HFD-fed mice.
7.Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(3):327-340
Purpose:
Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.
Materials and Methods:
We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).
Results:
ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%–88.47%), dysplasia (88.31%; 83.24%– 93.39%), and benign lesions (83.12%; 77.20%–89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%– 93.84%) and 91.43% (86.79%–96.07%), respectively, compared with an accuracy of 60.71% (52.62%–68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%–91.27%), 90.54% (87.21%–93.87%), and 88.85% (85.27%–92.44%), respectively.
Conclusions
ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.
8.Erratum: Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(4):480-
9.Risk of Ischemic Stroke in Relation to Helicobacter pylori Infection and Eradication Status: A Large-Scale Prospective Observational Cohort Study
Eun-Bi JEON ; Nayoung KIM ; Beom Joon KIM ; In-Chang HWANG ; Sang Bin KIM ; Ji-Hyun KIM ; Yonghoon CHOI ; Yu Kyung JUN ; Hyuk YOON ; Cheol Min SHIN ; Young Soo PARK ; Dong Ho LEE ; Soyeon AHN
Gut and Liver 2024;18(4):642-653
Background/Aims:
A few studies have suggested the association between Helicobacter pylori (HP) infection and ischemic stroke. However, the impact of HP eradication on stroke risk has not been well evaluated. This study aimed to assess the influence of HP eradication on the incidence of ischemic stroke, considering the potential effect of sex.
Methods:
This prospective observational cohort study was conducted at Seoul National University Bundang Hospital, from May 2003 to February 2023, and involved gastroscopy-based HP testing. Propensity score (PS) matching was employed to ensure balanced groups by matching patients in the HP eradicated group (n=2,803) in a 3:1 ratio with patients in the HP non-eradicated group (n=960). Cox proportional hazard regression analysis was used to evaluate the risk of ischemic stroke.
Results:
Among 6,664 patients, multivariate analysis after PS matching indicated that HP eradication did not significantly alter the risk of ischemic stroke (hazard ratio, 0.531; 95% confidence interval, 0.221 to 1.270; p=0.157). Sex-specific subgroup analyses, both univariate and multivariate, did not yield statistically significant differences. However, Kaplan-Meier analysis revealed a potential trend: the females in the HP eradicated group exhibited a lower incidence of ischemic stroke than those in the HP non-eradicated group, although this did not reach statistical significance (p=0.057).
Conclusions
This finding suggests that HP eradication might not impact the risk of ischemic stroke. However, there was a trend showing that females potentially had a lower risk of ischemic stroke following HP eradication, though further investigation is required to establish definitive evidence.
10.Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(3):327-340
Purpose:
Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.
Materials and Methods:
We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).
Results:
ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%–88.47%), dysplasia (88.31%; 83.24%– 93.39%), and benign lesions (83.12%; 77.20%–89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%– 93.84%) and 91.43% (86.79%–96.07%), respectively, compared with an accuracy of 60.71% (52.62%–68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%–91.27%), 90.54% (87.21%–93.87%), and 88.85% (85.27%–92.44%), respectively.
Conclusions
ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.