1.Expression and evaluation of porcine circovirus type 2 capsid protein mediated by recombinant adenoassociated virus 8
Shuang LI ; Bo WANG ; Shun JIANG ; Xiaohui LAN ; Yongbo QIAO ; Jiaojiao NIE ; Yuhe YIN ; Yuhua SHI ; Wei KONG ; Yaming SHAN
Journal of Veterinary Science 2021;22(1):e8-
Background:
Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide.
Objectives:
A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy.
Methods:
In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vitro after gene transfer.
Results:
The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2.
Conclusions
The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.
2.Application of iPDMS protein microarray in screening of tumor-associated antigen autoantibodies.
Fan CHEN ; Wei WANG ; Dayong GU ; Yongbo NIE ; Zhengqin XIAO ; Kaiyu HUANG ; Hongwei MA ; Jianan HE ; Fan YANG
Chinese Journal of Biotechnology 2021;37(11):4075-4082
The rapid screening of tumor markers is a challenging task for early diagnosis of cancer. This study aims to use highly sensitive chemiluminescent protein microarray technology to efficiently screen a variety of low abundance tumor related markers. A new material, termed integrated polydimethylsiloxane modified silica gel (iPDMS), was obtained by adding a surface polymerization initiator with olefin end to the conventional polydimethylsiloxane, and fixing into the three-dimensional structure of polydimethylsiloxane by thermal crosslinking through silicon hydrogen bonding. In order to make the iPDMS material resistant to non-specific protein adsorption, a poly(OEGMA) polymer brush was synthesized by surface-initiated atom transfer radical polymerization at the active initiation site. Finally, 20 tumor-related antigens were printed into the specific areas of the microarray by high-throughput spray printing technology, and assembled into 48-well detection microtiterplates of the iPDMS microarray. It was found the VEGFR and VEGF121 autoantibodies that obtained from 8 common tumors (breast cancer, lung cancer, colon cancer, gastric cancer, liver cancer, leukemia, lymphoma and ovarian cancer) can be used as potential tumor markers. The chemiluminescence labeled iPDMS protein microarray can be used for the screening of tumor autoantibodies at early stage.
Adsorption
;
Autoantibodies
;
Dimethylpolysiloxanes
;
Protein Array Analysis
;
Silica Gel
;
Surface Properties