1.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
2.Current status and suggestions on regulation of traditional Chinese medicine raw materials and preparations under regulatory system of drugs.
Li-Ping QU ; Yong-Dan XU ; Wei-Jing HE ; Ding-Kun ZHANG ; Nan YANG ; Min-Xian SONG ; Zhi-Qiang MIN ; Ting-Mo ZHANG
China Journal of Chinese Materia Medica 2025;50(3):824-832
At present, the cause of traditional Chinese medicine(TCM) in China has entered a new period of high-quality development. How to strengthen the foundation for the TCM industry from the source is an important issue that deserves the attention of the authorities, industry, and academia. This study systematically analyzed the regulatory system of TCM raw materials and preparations. The study took the TCM industry chain and the product life cycle as a clue and focused on the dimensions of TCM resource protection and plant cultivation(farming), production and quality supervision of TCM raw materials and preparations, and their market access and distribution. It analyzed the current situation of the regulation of TCM raw materials and preparations under the regulatory system of drugs, discussed the main problems, and put forward corresponding suggestions. The results can provide an important reference value for the subsequent improvement of the regulatory system of drugs and the construction of a prominent regulatory system of drugs in accordance with TCM characteristics.
Drugs, Chinese Herbal/economics*
;
Medicine, Chinese Traditional/standards*
;
China
;
Quality Control
;
Humans
;
Plants, Medicinal/chemistry*
3.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
4.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
5.Quantitative analysis of spatial distribution patterns and formation factors of medicinal plant resources in Anhui province.
Yong-Fei YIN ; Ke ZHANG ; Zhi-Xian JING ; Dai-Yin PENG ; Xiao-Bo ZHANG
China Journal of Chinese Materia Medica 2025;50(16):4584-4592
Analyzing the spatial distribution pattern and formation factors of medicinal plant resources can provide a scientific basis for the protection and development of traditional Chinese medicine(TCM) resources. This study is based on the survey data of medicinal plant resources in 104 county-level administrative regions of Anhui province in the Fourth National Survey of TCM Resources. The global spatial autocorrelation analysis, trend surface analysis, local spatial autocorrelation analysis, hotspot analysis, and a geodetector were employed to analyze the spatial distribution pattern of medicinal plant richness, and its relationship with natural factors was explored. The results can provide a basis for the formulation of development strategies such as the protection and utilization of TCM resources, as well as offer a scientific foundation for the establishment of regional planning schemes for TCM resources in Anhui province. The results indicated that the richness of medicinal plant resources in Anhui province had significant spatial heterogeneity, exhibiting highly clustered distribution characteristics. Cold spots and hot spots presented clustered distribution patterns, with cold spots mostly located north of the Huaihe River and hot spots south of the Yangtze River. Overall, the distribution of medicinal plant resources in Anhui province showed an overall trend of high in the south and low in the north, which was consistent with the overall geomorphic trend of this province. In addition, natural factors such as altitude, precipitation, and vegetation type played an important role in the diversity and spatial distribution pattern formation of medicinal plant resources. The extraction and analysis of the spatial distribution characteristics of natural factors in cold and hot spot regions discovered that the heterogeneity of eco-environments constituted a fundamental condition for the formation of species diversity.
Plants, Medicinal/classification*
;
China
;
Spatial Analysis
;
Conservation of Natural Resources
;
Biodiversity
6.Mechanism exploration and basic research on the repair of diabetic foot ulcer.
Hong-Rui WANG ; Kang WU ; Jia-Dong ZHANG ; Yong HU ; Xian LI
China Journal of Orthopaedics and Traumatology 2025;38(9):964-968
Diabetic foot ulcer (DFU) is one of the common chronic complications in diabetic patients. Its course is complex and the therapeutic effect is limited, which seriously affects the quality of life of patients. In recent years, significant progress has been made in the research on the mechanism of DFU wound repair. Studies have found that dysregulation of the inflammatory microenvironment, vascular dysfunction, obstruction of re-epithelialization, insufficient collagen deposition, and formation of wound biofilms are the core factors affecting healing. Intervention strategies targeting these mechanisms have become research hotspots. For instance, hydrogel scaffolds could provide an appropriate healing microenvironment, immune regulation strategies could promote inflammation resolution and tissue remodeling, and stem cell exosomes and growth factors have shown good potential in cell migration, angiogenesis, and matrix remodeling. Various natural compounds, such as components from Chinese herbal medicines, are also applied in diabetic foot ulcers. And it demonstrates excellent anti-inflammatory and restorative capabilities. However, existing research still faces obstacles in clinical translation, such as the immaturity of individualized treatment strategies and the difficulty of animal models in simulating complex clinical situations. By systematically summarizing the latest research progress on the repair mechanism of DFU, it is expected to provide theoretical support for precise treatment.
Humans
;
Diabetic Foot/drug therapy*
;
Wound Healing
;
Animals
7.Mechanism and Application of Chinese Herb Medicine in Treatment of Peripheral Nerve Injury.
Yu-Qing CHEN ; Yan-Xian ZHANG ; Xu ZHANG ; Yong-Mei LYU ; Zeng-Li MIAO ; Xiao-Yu LIU ; Xu-Chu DUAN
Chinese journal of integrative medicine 2025;31(3):270-280
Peripheral nerve injury (PNI) encompasses damage to nerves located outside the central nervous system, adversely affecting both motor and sensory functions. Although peripheral nerves possess an intrinsic capacity for self-repair, severe injuries frequently result in significant tissue loss and erroneous axonal junctions, thereby impeding complete recovery and potentially causing neuropathic pain. Various therapeutic strategies, including surgical interventions, biomaterials, and pharmacological agents, have been developed to enhance nerve repair processes. While preclinical studies in animal models have demonstrated the efficacy of certain pharmacological agents in promoting nerve regeneration and mitigating inflammation, only a limited number of these agents have been translated into clinical practice to expedite nerve regeneration. Chinese herb medicine (CHM) possesses a longstanding history in the treatment of various ailments and demonstrates potential efficacy in addressing PNI through its distinctive, cost-effective, and multifaceted methodologies. This review critically examines the advancements in the application of CHM for PNI treatment and nerve regeneration. In particular, we have summarized the most commonly employed and rigorously investigated CHM prescriptions, individual herbs, and natural products, elucidating their respective functions and underlying mechanisms in the context of PNI treatment. Furthermore, we have deliberated on the prospective development of CHM in both clinical practice and fundamental research.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Peripheral Nerve Injuries/drug therapy*
;
Animals
;
Nerve Regeneration/drug effects*
;
Medicine, Chinese Traditional
8.Efficacy and Safety of Fuzheng Jiedu Xiaoji Formula Combined with Conventional Western Therapy in Advanced HBV-HCC: A Single-Center, Randomized Controlled Trial.
Yi ZHANG ; Ke SHI ; Yong-Qi LI ; Yao LIU ; Ying FENG ; Xian-Bo WANG
Chinese journal of integrative medicine 2025;31(10):867-876
OBJECTIVES:
To evaluate whether adding Fuzheng Jiedu Xiaoji (FZJDXJ) therapy improves survival in advanced hepatitis B virus-related HCC (HBV-HCC) patients.
METHODS:
This prospective, randomized controlled study was performed at a major academic medical center in Beijing, China from October 2020 to October 2022. Eligible patients with advanced HBV-HCC were randomly divided equally (1:1) to receive either the combination of FZJDXJ and conventional Western medical therapy (63 cases, FZJDXJ group) or solely Western medicine (66 cases, control group). The study endpoints consisted of overall survival (OS) as the primary outcome, with progression-free survival (PFS), disease control rate (DCR), and adverse events (AEs) as secondary measures.
RESULTS:
The median OS was significantly prolonged in the FZJDXJ group at 8.9 months (95% CI: 6.0-11.9) vs. 4.4 months (95% CI: 3.2-7.3) in the control group (P<0.05). The hazard ratio for mortality in the FZJDXJ group was 0.59 (95% CI: 0.40-0.89), suggesting a 41% lower risk of death compared to the control group. The results revealed that patients receiving FZJDXJ therapy achieved a PFS of 5.1 months (95% CI: 4.1 to 7.2 months), compared to only 2.9 months (95% CI: 2.0 to 4.6 months) in the control group (P<0.05). Additionally, DCR was significantly elevated in the FZJDXJ group (20.6%) compared to the control group (10.6%, P<0.05). Subgroup analysis demonstrated that FZJDXJ significantly improved OS in patients with alpha-fetoprotein levels <400 ng/mL, age <60 years, Barcelona Clinic Liver Cancer (BCLC) stage C, and compensated liver function (Child-Pugh A and B, P<0.05). Multivariate analysis revealed that FZJDXJ therapy acted as an independent factor protecting against mortality within 1 year. Gastrointestinal symptoms are rare side effects, and no fatalities associated with the treatment were reported.
CONCLUSION
This randomized controlled trial demonstrated that FZJDXJ combined Western conventional therapy significantly improves OS and PFS in patients with advanced HBV-HCC. (registration No. ChiCTR2000033941).
Humans
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Liver Neoplasms/virology*
;
Carcinoma, Hepatocellular/virology*
;
Treatment Outcome
;
Hepatitis B virus
;
Adult
;
Aged
;
Hepatitis B/drug therapy*
9.Sorafenib promotes the E3 ubiquitin ligase FBXW7 to increase tau degradation and ameliorate tauopathies.
Yunqiang ZHOU ; Yong WANG ; Huiying YANG ; Chi ZHANG ; Jian MENG ; Lingliang ZHANG ; Kun LI ; Ling-Ling HUANG ; Xian ZHANG ; Hong LUO ; Yunwu ZHANG
Acta Pharmaceutica Sinica B 2025;15(11):5817-5831
Tauopathies, including Alzheimer's disease (AD), are a series of neurodegenerative diseases characterized by pathological accumulation of the microtubule-associated protein tau. Since the abnormal modification and deposition of tau in nerve cells are crucial for tauopathy etiology, methods for reducing tau levels, such as promoting tau degradation, may become effective strategies for disease treatment. Herein, we identified that sorafenib significantly reduced total tau and phosphorylated tau levels through screening FDA-approved drugs. We showed that sorafenib treatment attenuated cognitive deficits and tau pathologies in PS19 tauopathy model mice. Mechanistically, we found that sorafenib inhibited multiple kinases involved in tau phosphorylation and promoted autophagy. Importantly, we further demonstrated that sorafenib also promoted the expression of the E3 ubiquitin ligase FBXW7, which could bind tau and mediate tau degradation through the ubiquitin-proteasome pathway. Finally, we showed that FBXW7 expression decreased in the brains of AD patients and tauopathy model mice, and that overexpression of FBXW7 in the hippocampus attenuated cognitive deficits and tau pathologies in PS19 mice. These results suggest that sorafenib may be a promising treatment option for tauopathies by promoting tau degradation and reducing tau phosphorylation, and that targeting FBXW7 could also serve as an alternative therapeutic strategy for tauopathies.
10.Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo.
Bo JIANG ; Zhao-Yang MENG ; Yu-Jie HU ; Jun-Jun CHEN ; Ling ZONG ; Ling-Yan XU ; Xiang-Qi ZHANG ; Jing-Xian ZHANG ; Yong-Long HAN
Journal of Integrative Medicine 2025;23(5):576-590
OBJECTIVE:
Huachansu injection (HCSI), a promising anti-cancer Chinese medicine injection, has been reported to have the potential for reducing the toxicity of chemotherapy and improving the quality of life for colorectal cancer (CRC) patients. The objective of this study is to explore the synergistic and detoxifying effects of HCSI when used in combination with irinotecan (CPT-11).
METHODS:
To investigate the effect of HCSI on anti-CRC efficacy and intestinal toxicity of CPT-11, we measured changes in the biological behavior of LoVo cells in vitro, and anti-tumor effects in LoVo cell xenograft nude mice models in vivo. Meanwhile, the effect of HCSI on intestinal toxicity and the uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) expression was investigated in the CPT-11-induced colitis mouse model. Subsequently, we measured the effect of HCSI and its 13 constituent bufadienolides on the expression of UGT1A1 and organic anion transporting polypeptides 1B3 (OATP1B3) in HepG2 cells.
RESULTS:
The combination index (CI) results showed that the combination of HCSI and CPT-11 exhibited a synergistic effect (CI < 1), which significantly suppressing the LoVo cell migration, enhancing G2/M and S phase arrest, and inhibiting tumor growth in vivo. Additionally, the damage to intestinal tissues was attenuated by HCSI in CPT-11-induced colitis model, while the increased expression of UGT1A1 in HepG2 cells and in mouse was observed.
CONCLUSION
The co-therapy with HCSI alleviated the intestinal toxicity induced by CPT-11 and exerted an enhanced anti-CRC effect. The detoxifying mechanism may be related to the increased expression of UGT1A1 and OATP1B3 by HCSI and its bufadienolides components. The findings of this study may serve as a theoretical insights and strategies to improve CRC patient outcomes. Please cite this article as: Jiang B, Meng ZY, Hu YJ, Chen JJ, Zong L, Xu LY, Zhang XQ, Zhang JX, Han YL. Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo. J Integr Med. 2025; 23(5):576-590.
Irinotecan/therapeutic use*
;
Animals
;
Glucuronosyltransferase/genetics*
;
Humans
;
Colorectal Neoplasms/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Nude
;
Mice
;
Up-Regulation/drug effects*
;
Male
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Hep G2 Cells
;
Cell Line, Tumor
;
Intestines/drug effects*
;
Amphibian Venoms

Result Analysis
Print
Save
E-mail