1.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
2.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
3.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
4.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
5.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
6.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
7.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
8.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
9.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
10.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.

Result Analysis
Print
Save
E-mail