1.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
2.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
3.Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System
Il Rae PARK ; Yong Geun CHUNG ; Kyu Chang WON
Diabetes & Metabolism Journal 2025;49(1):1-12
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
4.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
5.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
6.Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System
Il Rae PARK ; Yong Geun CHUNG ; Kyu Chang WON
Diabetes & Metabolism Journal 2025;49(1):1-12
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
7.Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System
Il Rae PARK ; Yong Geun CHUNG ; Kyu Chang WON
Diabetes & Metabolism Journal 2025;49(1):1-12
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
8.Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System
Il Rae PARK ; Yong Geun CHUNG ; Kyu Chang WON
Diabetes & Metabolism Journal 2025;49(1):1-12
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
9.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
10.Efficacy and Safety of Metformin and Atorvastatin Combination Therapy vs. Monotherapy with Either Drug in Type 2 Diabetes Mellitus and Dyslipidemia Patients (ATOMIC): Double-Blinded Randomized Controlled Trial
Jie-Eun LEE ; Seung Hee YU ; Sung Rae KIM ; Kyu Jeung AHN ; Kee-Ho SONG ; In-Kyu LEE ; Ho-Sang SHON ; In Joo KIM ; Soo LIM ; Doo-Man KIM ; Choon Hee CHUNG ; Won-Young LEE ; Soon Hee LEE ; Dong Joon KIM ; Sung-Rae CHO ; Chang Hee JUNG ; Hyun Jeong JEON ; Seung-Hwan LEE ; Keun-Young PARK ; Sang Youl RHEE ; Sin Gon KIM ; Seok O PARK ; Dae Jung KIM ; Byung Joon KIM ; Sang Ah LEE ; Yong-Hyun KIM ; Kyung-Soo KIM ; Ji A SEO ; Il Seong NAM-GOONG ; Chang Won LEE ; Duk Kyu KIM ; Sang Wook KIM ; Chung Gu CHO ; Jung Han KIM ; Yeo-Joo KIM ; Jae-Myung YOO ; Kyung Wan MIN ; Moon-Kyu LEE
Diabetes & Metabolism Journal 2024;48(4):730-739
Background:
It is well known that a large number of patients with diabetes also have dyslipidemia, which significantly increases the risk of cardiovascular disease (CVD). This study aimed to evaluate the efficacy and safety of combination drugs consisting of metformin and atorvastatin, widely used as therapeutic agents for diabetes and dyslipidemia.
Methods:
This randomized, double-blind, placebo-controlled, parallel-group and phase III multicenter study included adults with glycosylated hemoglobin (HbA1c) levels >7.0% and <10.0%, low-density lipoprotein cholesterol (LDL-C) >100 and <250 mg/dL. One hundred eighty-five eligible subjects were randomized to the combination group (metformin+atorvastatin), metformin group (metformin+atorvastatin placebo), and atorvastatin group (atorvastatin+metformin placebo). The primary efficacy endpoints were the percent changes in HbA1c and LDL-C levels from baseline at the end of the treatment.
Results:
After 16 weeks of treatment compared to baseline, HbA1c showed a significant difference of 0.94% compared to the atorvastatin group in the combination group (0.35% vs. −0.58%, respectively; P<0.0001), whereas the proportion of patients with increased HbA1c was also 62% and 15%, respectively, showing a significant difference (P<0.001). The combination group also showed a significant decrease in LDL-C levels compared to the metformin group (−55.20% vs. −7.69%, P<0.001) without previously unknown adverse drug events.
Conclusion
The addition of atorvastatin to metformin improved HbA1c and LDL-C levels to a significant extent compared to metformin or atorvastatin alone in diabetes and dyslipidemia patients. This study also suggested metformin’s preventive effect on the glucose-elevating potential of atorvastatin in patients with type 2 diabetes mellitus and dyslipidemia, insufficiently controlled with exercise and diet. Metformin and atorvastatin combination might be an effective treatment in reducing the CVD risk in patients with both diabetes and dyslipidemia because of its lowering effect on LDL-C and glucose.

Result Analysis
Print
Save
E-mail