1.Current status of proteomics research in diabetic retinopathy
Shun ZHOU ; Yan WANG ; Jing LENG ; Yong ZHAO
International Eye Science 2025;25(3):428-433
Diabetic retinopathy(DR)has emerged as the leading cause of vision loss among working-age people in many countries under the increasing prevalence of diabetes and the longevity of the population. The pathogenesis of DR is complicated and has not been fully elucidated at present, while the treatment methods of DR have not been greatly improved, mainly retinal laser photocoagulation, anti-vascular endothelial growth factor(VEGF)treatment and vitrectomy surgery. The current treatment methods not only have shortcomings, but also bring serious economic burden to patients. Therefore, new methods are needed to explore the pathogenesis of DR, discover new treatments or improve current treatments, and improve the satisfaction of DR patients. In recent years, the identification and quantification of proteins expressed in blood, retina, vitreous humor, aqueous humor, and tears of all observable DR patients and DR rats and differentially expressed proteins after drug intervention have provided new ideas for further exploring the pathogenesis, diagnosis and treatment of DR with the rise of proteomics, which put forward new insights into early detection and treatment.The proteomics of DR in recent years are reviewed, in order to provide new ideas for the diagnosis and treatment of DR.
2.Current status of proteomics research in diabetic retinopathy
Shun ZHOU ; Yan WANG ; Jing LENG ; Yong ZHAO
International Eye Science 2025;25(3):428-433
Diabetic retinopathy(DR)has emerged as the leading cause of vision loss among working-age people in many countries under the increasing prevalence of diabetes and the longevity of the population. The pathogenesis of DR is complicated and has not been fully elucidated at present, while the treatment methods of DR have not been greatly improved, mainly retinal laser photocoagulation, anti-vascular endothelial growth factor(VEGF)treatment and vitrectomy surgery. The current treatment methods not only have shortcomings, but also bring serious economic burden to patients. Therefore, new methods are needed to explore the pathogenesis of DR, discover new treatments or improve current treatments, and improve the satisfaction of DR patients. In recent years, the identification and quantification of proteins expressed in blood, retina, vitreous humor, aqueous humor, and tears of all observable DR patients and DR rats and differentially expressed proteins after drug intervention have provided new ideas for further exploring the pathogenesis, diagnosis and treatment of DR with the rise of proteomics, which put forward new insights into early detection and treatment.The proteomics of DR in recent years are reviewed, in order to provide new ideas for the diagnosis and treatment of DR.
3.Study on accumulation of polysaccharide and steroid components in Polyporus umbellatus infected by Armillaria spp.
Ming-shu YANG ; Yi-fei YIN ; Juan CHEN ; Bing LI ; Meng-yan HOU ; Chun-yan LENG ; Yong-mei XING ; Shun-xing GUO
Acta Pharmaceutica Sinica 2025;60(1):232-238
In view of the few studies on the influence of
4.A Comparative Textual Analysis of the Medicinal Mandala and Numerical Concepts in the Sources “Sorig Bumshi” and “Gyudshi”: Establishing the Primacy of Sorig Bumshi
Da leng tai ; Boldsaikhan B ; Bold Sh ; Jin yong li ; Vaanchigsuren S ; Seesregdorj S
Mongolian Journal of Health Sciences 2025;87(3):54-59
Background:
A comparative study of classical medical texts within Traditional
Medicine provides a vital framework for uncovering the origins, development,
transmission, and historical significance of healing traditions. This approach
highlights a specific culture’s contribution to medical knowledge and reflects
the intricate interplay of religion, culture, and philosophical thought embedded
in those eras.
Aim:
To conduct a comparative analysis of the depictions of the “Medicinal
Mandala” as described in the first chapter of the “Root Tantra” section in the
two classical medical sources Sorig Bumshi and Gyudshi.
Materials and Methods:
This research examines two foundational Tibetan
medical texts—Sorig Bumshi and Gyudshi—using theme-based classification
and content analysis methodologies grounded in textual source criticism.
Results:
The findings confirm that Sorig Bumshi, a Bönpo medical text from
the ancient Zhangzhung civilization, was composed earlier. The great translator
Byaruzana translated it from the Zhangzhung language, after which Yuthok
Yönten Gönpo and collaborators edited, revised, and systematized the text to
form Gyudshi, embedding it in Buddhist epistemological frameworks.
Conclusions
1. The medicinal mandala of Gyudshi—structured around a central "beautiful
medicinal city" surrounded by four directional mountains—demonstrates a
refined adaptation of the more expansive, sacred mandala depicted in Sorig
Bumshi, which is centered on Olmo Lung Ring, a Bönpo pure land rich in symbolic
geography.
2. The numerical values recorded in both texts—particularly the recurring use
of 360 and 404—suggest different paradigms in medical theory. Sorig Bumshi
embeds these numbers within a Bön cosmological and ritual context (e.g.,
360 deities, mountains, and healing lakes), while Gyudshi reinterprets them
under Buddhist causal reasoning (e.g., 404 diseases derived from wind, bile,
phlegm, and karma). This transformation reflects a shift from Bön to Buddhist
medical epistemology through selective integration and doctrinal refinement.
5.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
6.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
7.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
8.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
10.Study on Soft Ionization Effect of Femtosecond Laser Desorption Single Photon Post-Ionization Technique
Quan-Feng XU ; Yu-Yang ZHU ; Yi-Xin LENG ; Yong-Jun HU ; Wei HANG
Chinese Journal of Analytical Chemistry 2024;52(10):1508-1516
Lasers are widely utilized in ion sources for mass spectrometry.They can be employed to desorb and ionize samples directly or enhance the ionization efficiency of neutral molecules through post-ionization.To investigate the ionization characteristics of the single photon ionization technique,in this work,a femtosecond laser with a wavelength of 515 nm was utilized for desorption,and a nanosecond laser with a wavelength of 118 nm for post-ionization.A laboratory-built laser desorption/laser post-ionization time-of-flight mass spectrometer(LDPI-TOFMS)was used to analyze three types of organic substances including acridines,phenothiazines,and metal porphyrins.The results demonstrated that the single photon ionization method effectively reduced the fragment generation,safeguarded the molecular ions against fragmentation,and achieved soft ionization as indicated by the adductive and characteristic molecular ions.Furthermore,a 266-nm nanosecond laser was employed as a multiphoton post-ionization source for comparison.The outcomes indicated that molecules were significantly fragmented,and more fragmented ions were generated due to the multiphoton ionization technique,which complicated the spectral analysis.The comparison further demonstrated that the single-photon post-ionization technology could be utilized to analyze a variety of organic compounds via soft ionization.LDPI-TOFMS procedure was straightforward,and did not require intricate sample preparations.The laser desorption with single photon post-ionization mass spectrometry showed potential to offer a high level of sensitivity and specificity for surfaces,thin layers,and complicated sample analysis.

Result Analysis
Print
Save
E-mail