1.Clinical practice guidelines for ovarian cancer: an update to the Korean Society of Gynecologic Oncology guidelines
Banghyun LEE ; Suk-Joon CHANG ; Byung Su KWON ; Joo-Hyuk SON ; Myong Cheol LIM ; Yun Hwan KIM ; Shin-Wha LEE ; Chel Hun CHOI ; Kyung Jin EOH ; Jung-Yun LEE ; Yoo-Young LEE ; Dong Hoon SUH ; Yong Beom KIM
Journal of Gynecologic Oncology 2025;36(1):e69-
We updated the Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of ovarian cancer as version 5.1. The ovarian cancer guideline team of the KSGO published announced the fifth version (version 5.0) of its clinical practice guidelines for the management of ovarian cancer in December 2023. In version 5.0, the selection of the key questions and the systematic reviews were based on the data available up to December 2022.Therefore, we updated the guidelines version 5.0 with newly accumulated clinical data and added 5 new key questions reflecting the latest insights in the field of ovarian cancer between 2023 and 2024. For each question, recommendation was provided together with corresponding level of evidence and grade of recommendation, all established through expert consensus.
2.Clinical practice guidelines for ovarian cancer: an update to the Korean Society of Gynecologic Oncology guidelines
Banghyun LEE ; Suk-Joon CHANG ; Byung Su KWON ; Joo-Hyuk SON ; Myong Cheol LIM ; Yun Hwan KIM ; Shin-Wha LEE ; Chel Hun CHOI ; Kyung Jin EOH ; Jung-Yun LEE ; Yoo-Young LEE ; Dong Hoon SUH ; Yong Beom KIM
Journal of Gynecologic Oncology 2025;36(1):e69-
We updated the Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of ovarian cancer as version 5.1. The ovarian cancer guideline team of the KSGO published announced the fifth version (version 5.0) of its clinical practice guidelines for the management of ovarian cancer in December 2023. In version 5.0, the selection of the key questions and the systematic reviews were based on the data available up to December 2022.Therefore, we updated the guidelines version 5.0 with newly accumulated clinical data and added 5 new key questions reflecting the latest insights in the field of ovarian cancer between 2023 and 2024. For each question, recommendation was provided together with corresponding level of evidence and grade of recommendation, all established through expert consensus.
3.Clinical practice guidelines for ovarian cancer: an update to the Korean Society of Gynecologic Oncology guidelines
Banghyun LEE ; Suk-Joon CHANG ; Byung Su KWON ; Joo-Hyuk SON ; Myong Cheol LIM ; Yun Hwan KIM ; Shin-Wha LEE ; Chel Hun CHOI ; Kyung Jin EOH ; Jung-Yun LEE ; Yoo-Young LEE ; Dong Hoon SUH ; Yong Beom KIM
Journal of Gynecologic Oncology 2025;36(1):e69-
We updated the Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of ovarian cancer as version 5.1. The ovarian cancer guideline team of the KSGO published announced the fifth version (version 5.0) of its clinical practice guidelines for the management of ovarian cancer in December 2023. In version 5.0, the selection of the key questions and the systematic reviews were based on the data available up to December 2022.Therefore, we updated the guidelines version 5.0 with newly accumulated clinical data and added 5 new key questions reflecting the latest insights in the field of ovarian cancer between 2023 and 2024. For each question, recommendation was provided together with corresponding level of evidence and grade of recommendation, all established through expert consensus.
4.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
5.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
6.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
7.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
8.Model for end-stage liver disease-3.0 vs. model for end-stage liver disease-sodium: mortality prediction in Korea
Jeong Han KIM ; Yong Joon CHO ; Won Hyeok CHOE ; So Young KWON ; Byung-Chul YOO
The Korean Journal of Internal Medicine 2024;39(2):248-260
Background/Aims:
The model for end-stage liver disease (MELD) serves as an indicator for short-term mortality among patients diagnosed with liver cirrhosis (LC) and is used to prioritize patients for liver transplantation. In 2021, the updated version of MELD, MELD-3.0, was introduced to improve the accuracy of the mortality prediction of MELD. Therefore, this study aimed to compare the efficacy of MELD 3.0 and MELD-Na in predicting mortality among Korean patients with LC.
Methods:
A retrospective review was conducted using the medical records of patients diagnosed with LC who were admitted to Konkuk University Hospital From 2011 to 2021. The study calculated the predictive values of MELD-Na and MELD-3.0 for 3- and 6-months mortality using the area under the receiver operating curve (AUROC) and compared the results using the DeLong test.
Results:
Of the 3,034 patients enrolled in the study, 339 (11.2%) died within 3 months and 421 (14.4%) died within 6 months. The AUROCs values for predicting 3 months mortality were 0.846 for MELD-Na and 0.851 for MELD-3.0. The corresponding AUROC values for predicting 6 months mortality were 0.843 for MELD-Na and 0.848 for MELD-3.0. MELD-3.0 exhibited better discrimination ability than MELD-Na for both 3 (p = 0.03) and 6 months mortality (p = 0.01).
Conclusions
Our study found a significant difference between the performance of MELD-3.0 and MELD-Na in Korean patients with LC.
9.Clinical safety and effectiveness of the Genoss drug-eluting stent in real-world clinical practice
Young Jin YOUN ; Jun-Won LEE ; Sung Gyun AHN ; Seung-Hwan LEE ; Junghan YOON ; Jae Hyoung PARK ; Sang-Yong YOO ; Woong Chol KANG ; Nam Ho LEE ; Ki Hwan KWON ; Joon Hyung DOH ; Sang-Wook LIM ; Yang Soo JANG ; Dong Woon JEON ; Jung Ho HEO ; Woong Gil CHOI ; Sungsoo CHO ; Bong-Ki LEE ; Hyonju JEONG ; Bum-Kee HONG ; Hyun-Hee CHOI
The Korean Journal of Internal Medicine 2023;38(5):683-691
Background/Aims:
The Genoss DES™ is a novel, biodegradable, polymer-coated, sirolimus-eluting stent with a cobalt- chromium stent platform and thin strut. Although the safety and effectiveness of this stent have been previously investigated, real-world clinical outcomes data are lacking. Therefore, the aim of this prospective, multicenter trial was to evaluate the clinical safety and effectiveness of the Genoss DES™ in all-comer patients undergoing percutaneous coronary intervention.
Methods:
The Genoss DES registry is a prospective, single-arm, observational trial for evaluation of clinical outcomes after Genoss DES™ implantation in all-comer patients undergoing percutaneous coronary intervention from 17 sites in South Korea. The primary endpoint was a device-oriented composite outcome of cardiac death, target vessel-related myocardial infarction (MI), and clinically driven target lesion revascularization (TLR) at 12 months.
Results:
A total of 1,999 patients (66.4 ± 11.1 years of age; 72.8% male) were analyzed. At baseline, 62.8% and 36.7% of patients had hypertension and diabetes, respectively. The implanted stent number, diameter, and length per patient were 1.5 ± 0.8, 3.1 ± 0.5 mm, and 37.0 ± 25.0 mm, respectively. The primary endpoint occurred in 1.8% patients, with a cardiac death rate of 1.1%, target vessel-related MI rate of 0.2%, and clinically driven TLR rate of 0.8%.
Conclusions
In this real-world registry, the Genoss DES™ demonstrated excellent safety and effectiveness at 12 months among all-comer patients undergoing percutaneous coronary intervention. These findings suggest that the Genoss DES™ may be a viable treatment option for patients with coronary artery disease.
10.The Efficacy and Safety of a Human Perirenal Adipose TissueDerived Stromal Vascular Fraction in an Interstitial Cystitis Rat Model
Ji Yong HA ; Eun Hye LEE ; So Young CHUN ; Jun Nyung LEE ; Yun-Sok HA ; Jae-Wook CHUNG ; Bo Hyun YOON ; Minji JEON ; Hyun Tae KIM ; Tae Gyun KWON ; Eun Sang YOO ; Bum Soo KIM
Tissue Engineering and Regenerative Medicine 2023;20(2):225-237
BACKGROUND:
Interstitial cystitis (IC) is a chronic and intractable disease that can severely deteriorate patients’ quality of life. Recently, stem cell therapy has been introduced as a promising alternative treatment for IC in animal models. We aimed to verify the efficacy and safety of the human perirenal adipose tissue-derived stromal vascular fraction (SVF) in an IC rat model.
METHODS:
From eight-week-old female rats, an IC rat model was established by subcutaneous injection of 200 lg of uroplakin3A. The SVF was injected into the bladder submucosal layer of IC rats, and pain scale analysis, awakening cytometry, and histological and gene analyses of the bladder were performed. For the in vivo safety analysis, genomic DNA purification and histological analysis were also performed to check tumorigenicity and thrombus formation.
RESULTS:
The mean pain scores in the SVF 20 ll group were significantly lower on days 7 and 14 than those in the control group, and bladder intercontraction intervals were significantly improved in the SVF groups in a dose-dependent manner. Regeneration of the bladder epithelium, basement membrane, and lamina propria was observed in the SVF group.In the SVF groups, however, bladder fibrosis and the expression of inflammatory markers were not significantly improved compared to those in the control group.
CONCLUSION
This study demonstrated that a perirenal adipose tissue-derived SVF is a promising alternative for the management of IC in terms of improving bladder pain and overactivity.

Result Analysis
Print
Save
E-mail