1.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
2.Assessing the Efficacy of Bortezomib and Dexamethasone for Induction and Maintenance Therapy in Relapsed/Refractory Cutaneous T-Cell Lymphoma: A Phase II CISL1701/BIC Study
Yoon Seok CHOI ; Joonho SHIM ; Ka-Won KANG ; Sang Eun YOON ; Jun Sik HONG ; Sung Nam LIM ; Ho-Young YHIM ; Jung Hye KWON ; Gyeong-Won LEE ; Deok-Hwan YANG ; Sung Yong OH ; Ho-Jin SHIN ; Hyeon-Seok EOM ; Dok Hyun YOON ; Hong Ghi LEE ; Seong Hyun JEONG ; Won Seog KIM ; Seok Jin KIM
Cancer Research and Treatment 2025;57(1):267-279
Purpose:
This multicenter, open-label, phase II trial evaluated the efficacy and safety of bortezomib combined with dexamethasone for the treatment of relapsed/refractory cutaneous T-cell lymphoma (CTCL) in previously treated patients across 14 institutions in South Korea.
Materials and Methods:
Between September 2017 and July 2020, 29 patients with histologically confirmed CTCL received treatment, consisting of eight 4-week cycles of induction therapy followed by maintenance therapy, contingent upon response, for up to one year. The primary endpoint was the proportion of patients achieving an objective global response.
Results:
Thirteen of the 29 patients (44.8%) achieved an objective global response, including two complete responses. The median progression-free survival (PFS) was 5.8 months, with responders showing a median PFS of 14.0 months. Treatment-emergent adverse events were generally mild, with a low incidence of peripheral neuropathy and hematologic toxicities. Despite the trend toward shorter PFS in patients with higher mutation burdens, genomic profiling before and after treatment showed no significant emergence of new mutations indicative of disease progression.
Conclusion
This study supports the use of bortezomib and dexamethasone as a viable and safe treatment option for previously treated CTCL, demonstrating substantial efficacy and manageability in adverse effects. Further research with a larger cohort is suggested to validate these findings and explore the prognostic value of mutation profiles.
3.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
4.Assessing the Efficacy of Bortezomib and Dexamethasone for Induction and Maintenance Therapy in Relapsed/Refractory Cutaneous T-Cell Lymphoma: A Phase II CISL1701/BIC Study
Yoon Seok CHOI ; Joonho SHIM ; Ka-Won KANG ; Sang Eun YOON ; Jun Sik HONG ; Sung Nam LIM ; Ho-Young YHIM ; Jung Hye KWON ; Gyeong-Won LEE ; Deok-Hwan YANG ; Sung Yong OH ; Ho-Jin SHIN ; Hyeon-Seok EOM ; Dok Hyun YOON ; Hong Ghi LEE ; Seong Hyun JEONG ; Won Seog KIM ; Seok Jin KIM
Cancer Research and Treatment 2025;57(1):267-279
Purpose:
This multicenter, open-label, phase II trial evaluated the efficacy and safety of bortezomib combined with dexamethasone for the treatment of relapsed/refractory cutaneous T-cell lymphoma (CTCL) in previously treated patients across 14 institutions in South Korea.
Materials and Methods:
Between September 2017 and July 2020, 29 patients with histologically confirmed CTCL received treatment, consisting of eight 4-week cycles of induction therapy followed by maintenance therapy, contingent upon response, for up to one year. The primary endpoint was the proportion of patients achieving an objective global response.
Results:
Thirteen of the 29 patients (44.8%) achieved an objective global response, including two complete responses. The median progression-free survival (PFS) was 5.8 months, with responders showing a median PFS of 14.0 months. Treatment-emergent adverse events were generally mild, with a low incidence of peripheral neuropathy and hematologic toxicities. Despite the trend toward shorter PFS in patients with higher mutation burdens, genomic profiling before and after treatment showed no significant emergence of new mutations indicative of disease progression.
Conclusion
This study supports the use of bortezomib and dexamethasone as a viable and safe treatment option for previously treated CTCL, demonstrating substantial efficacy and manageability in adverse effects. Further research with a larger cohort is suggested to validate these findings and explore the prognostic value of mutation profiles.
5.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
6.Assessing the Efficacy of Bortezomib and Dexamethasone for Induction and Maintenance Therapy in Relapsed/Refractory Cutaneous T-Cell Lymphoma: A Phase II CISL1701/BIC Study
Yoon Seok CHOI ; Joonho SHIM ; Ka-Won KANG ; Sang Eun YOON ; Jun Sik HONG ; Sung Nam LIM ; Ho-Young YHIM ; Jung Hye KWON ; Gyeong-Won LEE ; Deok-Hwan YANG ; Sung Yong OH ; Ho-Jin SHIN ; Hyeon-Seok EOM ; Dok Hyun YOON ; Hong Ghi LEE ; Seong Hyun JEONG ; Won Seog KIM ; Seok Jin KIM
Cancer Research and Treatment 2025;57(1):267-279
Purpose:
This multicenter, open-label, phase II trial evaluated the efficacy and safety of bortezomib combined with dexamethasone for the treatment of relapsed/refractory cutaneous T-cell lymphoma (CTCL) in previously treated patients across 14 institutions in South Korea.
Materials and Methods:
Between September 2017 and July 2020, 29 patients with histologically confirmed CTCL received treatment, consisting of eight 4-week cycles of induction therapy followed by maintenance therapy, contingent upon response, for up to one year. The primary endpoint was the proportion of patients achieving an objective global response.
Results:
Thirteen of the 29 patients (44.8%) achieved an objective global response, including two complete responses. The median progression-free survival (PFS) was 5.8 months, with responders showing a median PFS of 14.0 months. Treatment-emergent adverse events were generally mild, with a low incidence of peripheral neuropathy and hematologic toxicities. Despite the trend toward shorter PFS in patients with higher mutation burdens, genomic profiling before and after treatment showed no significant emergence of new mutations indicative of disease progression.
Conclusion
This study supports the use of bortezomib and dexamethasone as a viable and safe treatment option for previously treated CTCL, demonstrating substantial efficacy and manageability in adverse effects. Further research with a larger cohort is suggested to validate these findings and explore the prognostic value of mutation profiles.
7.Evaluation of a Modified Protocol for the SepsiPrep Kit for Direct Identification and Antimicrobial Susceptibility Testing From Positive Blood Culture Using BACTEC Plus and BacT/Alert Blood Culture Bottles
In Young YOO ; Sung Il HA ; Hee Jae HUH ; Tae Yeul KIM ; Hyang Jin SHIM ; Hyeyoung LEE ; Jayoung KIM ; Nam Yong LEE ; Yeon-Joon PARK
Annals of Laboratory Medicine 2024;44(2):183-187
8.Complement C5a Receptor Signalingin Macrophages Enhances Trained Immunity Through mTOR Pathway Activation
Eun-Hyeon SHIM ; Sae-Hae KIM ; Doo-Jin KIM ; Yong-Suk JANG
Immune Network 2024;24(4):e24-
Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing inflammatory or anti-inflammatory responses based on the type of ligand present. The Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, this research highlights a previously underappreciated aspect of C5aR signaling in trained immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for enhancing trained immunity.
9.Characteristics of High-Risk Groups for Suicide in Korea Before and After the COVID-19 Pandemic: K-COMPASS Cohort Study
Jeong Hun YANG ; Dae Hun KANG ; C. Hyung Keun PARK ; Min Ji KIM ; Sang Jin RHEE ; Min-Hyuk KIM ; Jinhee LEE ; Sang Yeol LEE ; Won Sub KANG ; Seong-Jin CHO ; Shin Gyeom KIM ; Se-Hoon SHIM ; Jung-Joon MOON ; Jieun YOO ; Weon-Young LEE ; Yong Min AHN
Journal of Korean Neuropsychiatric Association 2024;63(4):246-259
Objectives:
This study examined the changes in the characteristics of high-risk suicide groups in South Korea before and after the COVID-19 pandemic using the Korean Cohort for the Model Predicting a Suicide and Suicide-related Behavior (K-COMPASS) cohort.
Methods:
The K-COMPASS is a longitudinal cohort study that started in 2015. The participants included suicide attempters and individuals with suicidal ideation from various hospitals and mental health centers in South Korea. This study compared the sociodemographic and psychiatric characteristics of 800 participants from the first cohort (2015–2019) with 511 participants from the second and third cohorts (2019–2024). Data were collected through structured interviews and validated scales.
Results:
The second and third cohort participants were younger, had a higher proportion of females, and exhibited more severe psychiatric symptoms and higher suicidal risk than the first cohort. The prevalence of physical illnesses decreased, while the use of psychiatric medications and the severity of mental health issues increased. In addition, significant sociodemographic changes were observed, such as higher educational levels and urban residency.
Conclusion
Significant shifts in the characteristics of high-risk suicide groups were observed during the COVID-19 pandemic, highlighting the need for targeted mental health interventions focusing on younger individuals and females to prevent suicide in high-risk groups.
10.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases.

Result Analysis
Print
Save
E-mail