1.Clinical practice guidelines for ovarian cancer: an update to the Korean Society of Gynecologic Oncology guidelines
Banghyun LEE ; Suk-Joon CHANG ; Byung Su KWON ; Joo-Hyuk SON ; Myong Cheol LIM ; Yun Hwan KIM ; Shin-Wha LEE ; Chel Hun CHOI ; Kyung Jin EOH ; Jung-Yun LEE ; Yoo-Young LEE ; Dong Hoon SUH ; Yong Beom KIM
Journal of Gynecologic Oncology 2025;36(1):e69-
We updated the Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of ovarian cancer as version 5.1. The ovarian cancer guideline team of the KSGO published announced the fifth version (version 5.0) of its clinical practice guidelines for the management of ovarian cancer in December 2023. In version 5.0, the selection of the key questions and the systematic reviews were based on the data available up to December 2022.Therefore, we updated the guidelines version 5.0 with newly accumulated clinical data and added 5 new key questions reflecting the latest insights in the field of ovarian cancer between 2023 and 2024. For each question, recommendation was provided together with corresponding level of evidence and grade of recommendation, all established through expert consensus.
2.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
3.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
4.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
5.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
6.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
7.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
8.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
9.Clinical practice guidelines for ovarian cancer: an update to the Korean Society of Gynecologic Oncology guidelines
Banghyun LEE ; Suk-Joon CHANG ; Byung Su KWON ; Joo-Hyuk SON ; Myong Cheol LIM ; Yun Hwan KIM ; Shin-Wha LEE ; Chel Hun CHOI ; Kyung Jin EOH ; Jung-Yun LEE ; Yoo-Young LEE ; Dong Hoon SUH ; Yong Beom KIM
Journal of Gynecologic Oncology 2025;36(1):e69-
We updated the Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of ovarian cancer as version 5.1. The ovarian cancer guideline team of the KSGO published announced the fifth version (version 5.0) of its clinical practice guidelines for the management of ovarian cancer in December 2023. In version 5.0, the selection of the key questions and the systematic reviews were based on the data available up to December 2022.Therefore, we updated the guidelines version 5.0 with newly accumulated clinical data and added 5 new key questions reflecting the latest insights in the field of ovarian cancer between 2023 and 2024. For each question, recommendation was provided together with corresponding level of evidence and grade of recommendation, all established through expert consensus.
10.Clinical practice guidelines for ovarian cancer: an update to the Korean Society of Gynecologic Oncology guidelines
Banghyun LEE ; Suk-Joon CHANG ; Byung Su KWON ; Joo-Hyuk SON ; Myong Cheol LIM ; Yun Hwan KIM ; Shin-Wha LEE ; Chel Hun CHOI ; Kyung Jin EOH ; Jung-Yun LEE ; Yoo-Young LEE ; Dong Hoon SUH ; Yong Beom KIM
Journal of Gynecologic Oncology 2025;36(1):e69-
We updated the Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of ovarian cancer as version 5.1. The ovarian cancer guideline team of the KSGO published announced the fifth version (version 5.0) of its clinical practice guidelines for the management of ovarian cancer in December 2023. In version 5.0, the selection of the key questions and the systematic reviews were based on the data available up to December 2022.Therefore, we updated the guidelines version 5.0 with newly accumulated clinical data and added 5 new key questions reflecting the latest insights in the field of ovarian cancer between 2023 and 2024. For each question, recommendation was provided together with corresponding level of evidence and grade of recommendation, all established through expert consensus.

Result Analysis
Print
Save
E-mail