1.Clinical Application of Artificial Intelligence in Breast Ultrasound
John BAEK ; Jaeil KIM ; Hye Jung KIM ; Jung Hyun YOON ; Ho Yong PARK ; Jeeyeon LEE ; Byeongju KANG ; Iliya ZAKIRYAROV ; Askhat KULTAEV ; Bolat SAKTASHEV ; Won Hwa KIM
Journal of the Korean Society of Radiology 2025;86(2):216-226
Breast cancer is the most common cancer in women worldwide, and its early detection is critical for improving survival outcomes. As a diagnostic and screening tool, mammography can be less effective owing to the masking effect of fibroglandular tissue, but breast US has good sensitivity even in dense breasts. However, breast US is highly operator dependent, highlighting the need for artificial intelligence (AI)-driven solutions. Unlike other modalities, US is performed using a handheld device that produces a continuous real-time video stream, yielding 12000–48000 frames per examination. This can be significantly challenging for AI development and requires real-time AI inference capabilities. In this review, we classified AI solutions as computer-aided diagnosis and computer-aided detection to facilitate a functional understanding and review commercial software supported by clinical evidence.In addition, to bridge healthcare gaps and enhance patient outcomes in geographically under resourced areas, we propose a novel framework by reviewing the existing AI-based triage workflows including mobile ultrasound.
2.Effects of an intervention combining warm therapy with a digital distraction app on pain, stress, and satisfaction during intravenous catheterization in South Korea: a randomized controlled trial
Jae-Kyeum LEE ; Ki-Yong KIM ; Yean-Hee JEONG ; Yu-Jin LEE ; Min-Ho LEE ; Myung-Haeng HUR
Journal of Korean Biological Nursing Science 2025;27(2):191-202
Purpose:
This study aimed to evaluate the effects of an intervention combining warm therapy (via a thermoelectric-element tourniquet) and a distraction-based approach (via an augmented reality-based app known as TWINKLE) on pain, stress, and satisfaction during intravenous catheterization in adults.
Methods:
A randomized controlled trial was conducted in South Korea with 93 healthy adults who were randomly assigned to one of three groups: the experimental group (TWINKLE app with warm therapy), the comparison group (warm therapy only), and the control group (no treatment). Participants’ pain, stress, and satisfaction, as well as practitioner satisfaction, were measured after the intervention.
Results:
Pain scores differed significantly among the three groups (F = 5.68, p = .005), with the experimental group showing significantly lower scores than the control group (p = .003). Stress levels were also significantly lower in the experimental group than in the other groups (F = 9.42, p < .001). Participant satisfaction was highest in the experimental group (F = 17.65, p < .001), while nurse satisfaction was significantly higher in the comparison group than in the experimental and control groups (F = 67.91, p < .001), suggesting that the additional distraction intervention may have increased nurses’ workload.
Conclusion
Combining digital distraction with warm therapy using a thermoelectric-element tourniquet effectively reduces pain and stress while improving patient satisfaction during intravenous catheterization. Further research is needed to optimize this approach, with a particular focus on targeting digital distraction interventions to patients with higher levels of procedural anxiety and finding ways to minimize practitioner workload.
3.Impact of HER2-Low Status on Pathologic Complete Response and Survival Outcome Among Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy
Young Joo LEE ; Tae-Kyung YOO ; Sae Byul LEE ; Il Yong CHUNG ; Hee Jeong KIM ; Beom Seok KO ; Jong Won LEE ; Byung Ho SON ; Sei Hyun AHN ; Hyehyun JEONG ; Jae Ho JUNG ; Jin-Hee AHN ; Kyung Hae JUNG ; Sung-Bae KIM ; Hee Jin LEE ; Gyungyub GONG ; Jisun KIM
Journal of Breast Cancer 2025;28(1):11-22
Purpose:
This study analyzed the pathological complete response (pCR) rates, long-term outcomes, and biological features of human epidermal growth factor receptor 2 (HER2)-zero, HER2-low, and HER2-positive breast cancer patients undergoing neoadjuvant treatment.
Methods:
This single-center study included 1,667 patients who underwent neoadjuvant chemotherapy from 2008 to 2014. Patients were categorized by HER2 status, and their clinicopathological characteristics, chemotherapy responses, and recurrence-free survival (RFS) rates were analyzed.
Results:
Patients with HER2-low tumors were more likely to be older (p = 0.081), have a lower histological grade (p < 0.001), and have hormone receptor (HorR)-positive tumors (p < 0.001). The HER2-positive group exhibited the highest pCR rate (23.3%), followed by the HER2-zero (15.5%) and HER2-low (10.9%) groups. However, the pCR rate did not differ between HER2-low and HER2-zero tumors in the HorR-positive or HorR-negative subgroups.The 5-year RFS rates increased in the following order: HER2-low, HER2-positive, and HER2-zero (80.0%, 77.5%, and 74.5%, respectively) (log-rank test p = 0.017). A significant survival difference between patients with HER2-low and HER2-zero tumors was only identified in HorR-negative tumors (5-year RFS for HER2-low, 74.5% vs. HER2-zero, 66.0%; log-rank test p-value = 0.04). Multivariate survival analysis revealed that achieving a pCR was the most significant factor associated with improved survival (hazard ratio [HR], 4.279; p < 0.001).Compared with HER2-zero, the HRs for HER2-low and HER2-positive tumors were 0.787 (p = 0.042) and 0.728 (p = 0.005), respectively. After excluding patients who received HER2-targeted therapy, patients with HER2-low tumors exhibited better RFS than those with HER2-zero (HR 0.784, p = 0.04), whereas those with HER2-positive tumors exhibited no significant difference compared with those with HER2-low tumors (HR, 0.975; p = 0.953).
Conclusion
Patients with HER2-low tumors had no significant difference in pCR rate compared to HER2-zero but showed better survival, especially in HorR-negative tumors.Further investigation into biological differences is warranted.
5.Eosinophilic Cholangitis Diagnosed in a Patient with Abnormal Liver Enzymes: A Case Report
Sung Hoon CHANG ; Jun Yeol KIM ; Yong Soo SONG ; Tae Seung LEE ; Jin Ho CHOI ; Woo Hyun PAIK ; Sang Hyub LEE ; Ji Kon RYU ; In Rae CHO
Korean Journal of Pancreas and Biliary Tract 2025;30(1):19-25
It is difficult to determine a cause of bile duct stricture and dilatation. Eosinophilic cholangitis, a rare benign condition, may be one cause of bile duct stricture and dilatation. It can be evaluated using various methods of histopathology, radiographs, endoscopy, and hematologic findings. Treatment generally involves steroid therapy which can lead to improvement. This case report will discuss eosinophilic cholangitis, emphasizing that while it can easily be overlooked but should be considered in differential diagnoses.
6.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
7.Diagnosing Complete Response to Preoperative Chemoradiation in Esophageal Cancer Using Dynamic Contrast-Enhanced MRI Response Criteria
Yura AHN ; Jooae CHOE ; Hyun Joo LEE ; Sook Ryun PARK ; Jong-Hoon KIM ; Ho June SONG ; Min-Ju KIM ; Yong-Hee KIM
Korean Journal of Radiology 2025;26(3):269-280
Objective:
To assess the performance of novel qualitative diagnostic criteria using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) to identify the pathologic complete response (pCR) of primary tumors in esophageal cancer after neoadjuvant chemoradiation (nCRT).
Materials and Methods:
Patients who underwent nCRT, subsequent MRI, positron emission tomography/computed tomography (PET/CT), endoscopy, or esophagectomy for esophageal cancer between October 2021 and October 2023 were retrospectively analyzed. The DCE-MRI response of primary tumors was interpreted using five grades by thoracic radiologists as follows: G1 (compatible with CR), G2 (probable CR), G3 (probable partial response [PR]), G4 (compatible with PR), and G5 (stable or progressive disease). The performances of MRI, PET/CT, endoscopy, and their combinations in diagnosing pCR in primary tumors were calculated.
Results:
A total of 52 patients (male:female, 46:6; age, 61.2 ± 8.0 years) were included. Surgical specimens revealed pCR (ypT0) in 34 patients. G1 as the MRI criterion for pCR of primary tumors yielded a positive predictive value (PPV), specificity of 100% (18/18), and low sensitivity (23.5% [8/34]). Combining G1 and G2 as the MRI criteria increased the sensitivity to 73.5% (25/34), with a specificity of 88.9% (16/18), accuracy of 78.8% (41/52), and PPV of 92.6% (25/27). Adding the DCEMRI results (G1-2) significantly improved accuracy for both PET/CT (from 65.4% [34/52] to 80.8% [42/52], P = 0.03) and endoscopy (from 55.8% [29/52] to 76.9% [40/52], P = 0.005), with increase in sensitivity (from 55.9% [19/34] to 82.4% [28/34] for PET/CT-based evaluation [P = 0.008] and from 47.1% [16/34] to 82.4% [28/34] for endoscopy-based evaluation [P = 0.001]).
Conclusion
DCE-MRI-based grading shows high diagnostic performance for identifying pCR in primary tumors, particularly in terms of PPV and specificity, and enhances response evaluation when combined with PET/CT and endoscopy.
8.Transforaminal Endoscopic Thoracic Discectomy Is More Cost-Effective Than Microdiscectomy for Symptomatic Disc Herniations
Junseok BAE ; Pratyush SHAHI ; Sang-Ho LEE ; Han-Joong KEUM ; Ju-Wan SEOK ; Yong-Soo CHOI ; Jin-Sung KIM
Neurospine 2025;22(1):118-127
Objective:
To analyze costs and cost-effectiveness of transforaminal endoscopic thoracic discectomy (TETD) for the treatment of symptomatic thoracic disc herniation (TDH) and compare it with open microdiscectomy (MD).
Methods:
This retrospective cohort study included patients who underwent TETD or MD for symptomatic TDH and had a minimum follow-up of 1 year. Cost analysis included direct costs (primary and secondary hospital costs), indirect costs (lost wages due to work absence), total costs (direct + indirect), and cost-effectiveness (cost per quality-adjusted life year [QALY] and incremental cost-effectiveness ratio [ICER]). Clinical outcomes included patient-reported outcome measures (Oswestry Disability Index [ODI], 36-item Short Form health survey [SF-36]), QALY gained, and reoperation and readmission rates at 1 year. TETD and MD groups were compared for outcome measures.
Results:
A total of 111 patients (57 TETD, 54 MD) were included. The direct ($6,270 TETD vs. $7,410 MD, p < 0.01), indirect costs ($1,250 TETD vs. $1,450 MD, p < 0.01), total costs ($7,520 TETD vs. $8,860 MD, p < 0.01), and cost per QALY ($31,333 TETD vs. $44,300 MD, p < 0.01) were significantly lower for TETD compared to MD. ICER of TETD was found to be -$33,500. At 1 year, TETD group showed significantly greater improvement in ODI (46% vs. 36%, p < 0.01) and SF-36 (64% vs. 53%, p < 0.01) and significantly greater QALY gained (0.24 vs. 0.2, p < 0.01) compared to MD group. No significant difference was found in reoperation and readmission rates.
Conclusion
TETD demonstrated significantly better clinical outcomes, lower overall costs, and better cost-effectiveness than MD in appropriately selected patients of symptomatic TDH.
9.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
10.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.

Result Analysis
Print
Save
E-mail