2.Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences.
Hui CAO ; Yohei SASAKI ; Hirotoshi FUSHIMI ; Katsuko KOMATSU
Acta Pharmaceutica Sinica 2010;45(7):926-33
Curcuma drugs have been used discriminatingly for invigorating blood circulation, promoting digestion, and as a cholagogic in China. However, there is confusion about the drug's botanical origins and clinical uses because of morphological similarity of Curcuma plants and drugs. Comparative sequencing of the 18S rRNA gene in nuclear ribosomal DNA (rDNA) and trnK gene in chloroplast DNA (cpDNA) was carried out in order to examine interspecies phylogeny and to identify ultimately Curcuma species. A total of a hundred of accessions of eighteen species were analyzed. This resulted in an aligned matrix of 1810 bp for 18S rDNA and 2 800 bp for trnK. 18S rDNA sequence divergence within the ingroup ranged from 0-0.05%, trnK ranged from 0-0.19%. One base transversion-substituted site (from cytosine to thymine) was observed from the upstream of 18S rDNA at nucleotide position 234 in C. kwangsiensis and Japanese population of C. zedoaria which have separated genetic distance to other Curcuma taxa. Two noncoding regions embedded in trnK intron showed higher variability, including nucleotide substitutions, repeat insertion and deletions. Based on consensus of relationship, eighteen major lineages within Curcuma are recognized at the species level. The results suggest that Curcuma is monophyletic with 100% bootstrap support and sister to the genera Hedychium and Zingiber. The trnK sequences showed considerable variations between Curcuma species and thus were revealed as a promising candidate for barcoding of Curcuma species, which provide valuable characters for inferring relationship within species but are insufficient to resolve relationships among closely related taxa.
3.Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences.
Hui CAO ; Yohei SASAKI ; Hirotoshi FUSHIMI ; Katsuko KOMATSU
Acta Pharmaceutica Sinica 2010;45(7):926-933
Curcuma drugs have been used discriminatingly for invigorating blood circulation, promoting digestion, and as a cholagogic in China. However, there is confusion about the drug's botanical origins and clinical uses because of morphological similarity of Curcuma plants and drugs. Comparative sequencing of the 18S rRNA gene in nuclear ribosomal DNA (rDNA) and trnK gene in chloroplast DNA (cpDNA) was carried out in order to examine interspecies phylogeny and to identify ultimately Curcuma species. A total of a hundred of accessions of eighteen species were analyzed. This resulted in an aligned matrix of 1810 bp for 18S rDNA and 2 800 bp for trnK. 18S rDNA sequence divergence within the ingroup ranged from 0-0.05%, trnK ranged from 0-0.19%. One base transversion-substituted site (from cytosine to thymine) was observed from the upstream of 18S rDNA at nucleotide position 234 in C. kwangsiensis and Japanese population of C. zedoaria which have separated genetic distance to other Curcuma taxa. Two noncoding regions embedded in trnK intron showed higher variability, including nucleotide substitutions, repeat insertion and deletions. Based on consensus of relationship, eighteen major lineages within Curcuma are recognized at the species level. The results suggest that Curcuma is monophyletic with 100% bootstrap support and sister to the genera Hedychium and Zingiber. The trnK sequences showed considerable variations between Curcuma species and thus were revealed as a promising candidate for barcoding of Curcuma species, which provide valuable characters for inferring relationship within species but are insufficient to resolve relationships among closely related taxa.
China
;
Curcuma
;
classification
;
genetics
;
DNA Mutational Analysis
;
DNA, Chloroplast
;
genetics
;
DNA, Plant
;
genetics
;
Introns
;
Japan
;
Molecular Sequence Data
;
Nucleic Acid Amplification Techniques
;
Phylogeny
;
Plants, Medicinal
;
classification
;
genetics
;
Plastids
;
genetics
;
RNA, Ribosomal, 18S
;
genetics
;
Sequence Analysis, DNA
4.Generation of Induced Pluripotent Stem Cells and Neural Stem/Progenitor Cells from Newborns with Spina Bifida Aperta.
Yohei BAMBA ; Masahiro NONAKA ; Natsu SASAKI ; Tomoko SHOFUDA ; Daisuke KANEMATSU ; Hiroshi SUEMIZU ; Yuichiro HIGUCHI ; Ritsuko K POOH ; Yonehiro KANEMURA ; Hideyuki OKANO ; Mami YAMASAKI
Asian Spine Journal 2017;11(6):870-879
STUDY DESIGN: We established induced pluripotent stem cells (iPSCs) and neural stem/progenitor cells (NSPCs) from three newborns with spina bifida aperta (SBa) using clinically practical methods. PURPOSE: We aimed to develop stem cell lines derived from newborns with SBa for future therapeutic use. OVERVIEW OF LITERATURE: SBa is a common congenital spinal cord abnormality that causes defects in neurological and urological functions. Stem cell transplantation therapies are predicted to provide beneficial effects for patients with SBa. However, the availability of appropriate cell sources is inadequate for clinical use because of their limited accessibility and expandability, as well as ethical issues. METHODS: Fibroblast cultures were established from small fragments of skin obtained from newborns with SBa during SBa repair surgery. The cultured cells were transfected with episomal plasmid vectors encoding reprogramming factors necessary for generating iPSCs. These cells were then differentiated into NSPCs by chemical compound treatment, and NSPCs were expanded using neurosphere technology. RESULTS: We successfully generated iPSC lines from the neonatal dermal fibroblasts of three newborns with SBa. We confirmed that these lines exhibited the characteristics of human pluripotent stem cells. We successfully generated NSPCs from all SBa newborn-derived iPSCs with a combination of neural induction and neurosphere technology. CONCLUSIONS: We successfully generated iPSCs and iPSC-NSPCs from surgical samples obtained from newborns with SBa with the goal of future clinical use in patients with SBa.
Cells, Cultured
;
Ethics
;
Fibroblasts
;
Humans
;
Induced Pluripotent Stem Cells*
;
Infant, Newborn*
;
Meningomyelocele
;
Plasmids
;
Pluripotent Stem Cells
;
Regenerative Medicine
;
Skin
;
Spina Bifida Cystica*
;
Spinal Cord
;
Spinal Dysraphism*
;
Stem Cell Transplantation
;
Stem Cells
5.Relationship between screen time and nutrient intake in Japanese children and adolescents: a cross-sectional observational study.
Hiromasa TSUJIGUCHI ; Daisuke HORI ; Yasuhiro KAMBAYASHI ; Toshio HAMAGISHI ; Hiroki ASAKURA ; Junko MITOMA ; Masami KITAOKA ; Enoch Olando ANYENDA ; Thao Thi Thu NGUYEN ; Yohei YAMADA ; Koichiro HAYASHI ; Tadashi KONOSHITA ; Takiko SAGARA ; Aki SHIBATA ; Satoshi SASAKI ; Hiroyuki NAKAMURA
Environmental Health and Preventive Medicine 2018;23(1):34-34
BACKGROUND:
Sedentary behaviors have recently become an important public health issue. We aimed to investigate the relationship between screen time and nutrient intake in children and adolescents.
METHODS:
The present study was conducted in 2013. Data were collected from children and adolescents aged between 6 and 15 years old in Shika town. Questionnaires were distributed to 1459 subjects, 1414 of whom participated in the study (96.9%). Sedentary behaviors were assessed based on participants' screen behaviors (television (TV) viewing, personal computer (PC) use, and mobile phone (MP) use). The main outcomes were the intake of nutrients from a validated food frequency questionnaire. Analysis of covariance (ANCOVA) was used to examine the significance of differences in nutrient intake estimates. Multivariate linear regression analyses, adjusting for age, BMI, and physical activity, were used to provide parameter estimates (β) and 95% CI for the relationship between screen time and nutrient intake.
RESULTS:
In boys, longer TV viewing times correlated or tended to correlate with a lower intake of protein, potassium, calcium, iron, vitamin K, vitamin B-2, and total dietary fiber. In girls, longer TV viewing times correlated with a lower intake of protein, sodium, calcium, vitamin D, and vitamin B-2. Longer TV viewing times correlated with a higher intake of n-6 fatty acids in girls. PC use was related or tended to be related to a lower intake of potassium, iron, vitamin K, and folic acid in boys, but not in girls. A relationship was observed between MP use and a lower intake of vitamin K in boys, and MP use and a higher intake of vitamin D in girls.
CONCLUSIONS
The present results revealed that longer TV viewing times are associated with less protein, minerals, vitamins, and total dietary fiber intake in children and adolescents. It was also revealed that boys with PC use have less minerals and vitamins. These results support the need to design intervention programs that focus on decreasing TV viewing time in both sexes and PC use in boys while encouraging adherence to dietary guidelines among children and adolescents.
Adolescent
;
Body Mass Index
;
Child
;
Cross-Sectional Studies
;
Diet
;
Energy Intake
;
Exercise
;
Female
;
Humans
;
Japan
;
Male
;
Screen Time
;
Sedentary Behavior
;
Sex Factors
;
Socioeconomic Factors