1.Research progress of immune checkpoint inhibitors in the treatment of EGFR-TKIs-resistant NSCLC
Yixuan ZHU ; Yang WANG ; Tongmin WANG
China Pharmacy 2025;36(2):239-244
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are targeted drugs for the treatment of advanced non-small cell lung cancer (NSCLC), but long-term use inevitably leads to drug resistance. Resistance to EGFR-TKIs can alter the tumor microenvironment, and patients with NSCLC resistant to EGFR-TKIs can regain the benefits of immune checkpoint inhibitors (ICIs), but the changes in the tumor microenvironment are complex and the efficacy is unclear. This article reviews the clinical studies of ICIs in the treatment of EGFR-TKIs-resistant NSCLC, and finds that for patients with EGFR-TKIs-resistant NSCLC, the efficacy of ICIs as a single agent is unclear, and other relevant biomarkers need to be found to screen the beneficiary population. ICIs+EGFR-TKIs have potential toxicity and are not recommended for clinical use. There is controversy about the efficacy of ICIs+chemotherapy, and it is recommended to use it cautiously in clinical practice. ICIs+anti-vascular endothelial growth factor (VEGF) drug therapy has a synergistic effect, but may increase the incidence of adverse events. ICIs+chemotherapy+anti- VEGF drug have a synergistic effect and the incidence of adverse events is similar to that of chemotherapy. New ICIs such as lymphocyte activating gene 3 inhibitors are still in the clinical research stage or preclinical research stage, but they may be a new promising treatment.
2.Research progress of immune checkpoint inhibitors in the treatment of EGFR-TKIs-resistant NSCLC
Yixuan ZHU ; Yang WANG ; Tongmin WANG
China Pharmacy 2025;36(2):239-244
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are targeted drugs for the treatment of advanced non-small cell lung cancer (NSCLC), but long-term use inevitably leads to drug resistance. Resistance to EGFR-TKIs can alter the tumor microenvironment, and patients with NSCLC resistant to EGFR-TKIs can regain the benefits of immune checkpoint inhibitors (ICIs), but the changes in the tumor microenvironment are complex and the efficacy is unclear. This article reviews the clinical studies of ICIs in the treatment of EGFR-TKIs-resistant NSCLC, and finds that for patients with EGFR-TKIs-resistant NSCLC, the efficacy of ICIs as a single agent is unclear, and other relevant biomarkers need to be found to screen the beneficiary population. ICIs+EGFR-TKIs have potential toxicity and are not recommended for clinical use. There is controversy about the efficacy of ICIs+chemotherapy, and it is recommended to use it cautiously in clinical practice. ICIs+anti-vascular endothelial growth factor (VEGF) drug therapy has a synergistic effect, but may increase the incidence of adverse events. ICIs+chemotherapy+anti- VEGF drug have a synergistic effect and the incidence of adverse events is similar to that of chemotherapy. New ICIs such as lymphocyte activating gene 3 inhibitors are still in the clinical research stage or preclinical research stage, but they may be a new promising treatment.
3.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
4.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
5.Effect of miR-130a-3p targeting PPAR-γ on epithelial-mesenchymal transition in silica-induced pulmonary fibrosis
Xiaohui HAO ; Qian LI ; Yixuan JIN ; Qinxin ZHANG ; Yudi WANG ; Fang YANG
Journal of Environmental and Occupational Medicine 2025;42(2):188-195
Background At present, the treatment of silicosis is still limited, and no method is available to cure the disease. miRNAs are involved in the process of fibrosis at the transcriptional level by directly degrading target gene mRNA or inhibiting its translation. However, how miR-130a-3p regulates silicosis fibrosis has not been fully elucidated yet. Objective To investigate whether miR-130a-3p promotes epithelial-mesenchymal transition (EMT) by inhibiting peroxisome proliferators-activated receptors gamma (PPAR-γ), thereby pro-moting the process of silicotic fibrosis. To identify effective new targets for the treatment of silicotic fibrosis. Methods (1) Animal experiments: C57BL/6J mice were intratracheally injected with a one-time dose of 10 mg silica suspension (dissolved in 100 μL saline) as positive lung exposure. A silicosis model group was established 28 d after the exposure. A control group was injected with the same amount of normal saline into the trachea. Hematoxylin-eosin staining and Sirius red staining were used to observe the pathological changes and collagen deposition in lung tissues respectively. Realtime fluorescence-based quantitative polymerase chain reaction (RT-qPCR) was used to assay the expression of miR-130a-3p and PPAR-γ mRNA in lung tissues. Western blotting was used to detect the protein expression of PPAR-γ, transforming growth factor (TGF)-β1, E-cadherin, α-smooth muscle actin (α-SMA), and Collagen Ⅰ in lung tissues. (2) Cells experiments: Mouse lung epithelial cells (MLE-12) were induced with 5 µg·L−1 TGF-β1 for different time (0, 12, 24, 48 h). RT-qPCR was used to detect the expression of miR-130a-3p and PPAR-γ mRNA in cells. The binding relationship between miR-130a-3p and PPAR-γ mRNA was verified by dual luciferase reporter gene assay. MLE-12 cells were stimulated by 5 µg·L−1 TGF-β1 after transfection of miR-130a-3p inhibitor, and Western blotting was used to measure the protein expression of PPAR-γ, E-cadherin, and α-SMA in the TGF-β1-induced cells. Results In the silicosis model group, the alveolar septum was widened and the pulmonary nodules were formed. The Sirius red staining collagen deposition in pulmonary nodules indicated that a silicosis fibrosis model was successfully established. The expressions of TGF-β1, α-SMA, and Collagen Ⅰ proteins were increased, and the expressions of E-cadherin and PPAR-γ proteins were decreased in lung tissues of the silicosis group, compared with the control group (P<0.05 or P<0.01). The expression of miR-130a-3p was increased and the expression of PPAR-γ mRNA was decreased in lung tissues of the silicosis model (P<0.01). The expression of miR-130a-3p was significantly increased, while the expression of PPAR-γ mRNA was decreased in the TGF-β1 induced MLE-12 cells (P<0.05 or P<0.01). The dual luciferase reporter assay showed a direct relationship between miR-130a-3p and PPAR-γ mRNA in MLE-12 cells. The transfection of miR-130a-3p inhibitor in the TGF-β1 induced MLE-12 cells inhibited the decrease of PPAR-γ and E-cadherin proteins, and the increase of α-SMA protein in the MLE-12 cells induced by TGF-β1 (P<0.05 or P<0.01). Conclusion miR-130a-3p promotes the development of silicosis fibrosis by targeting PPAR-γ to increase pulmonary EMT.
6.Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology
Linlin XIAO ; Yixuan YANG ; Shanshan LI ; Lanshiyu LUO ; Siwei YIN ; Juming SUN ; Wei SHI ; Yiqiang OUYANG ; Xiyi LI
Laboratory Animal and Comparative Medicine 2025;45(3):269-278
Objective To establish a rat model of Alzheimer's disease (AD) expressing human triple mutant amyloid precursor protein (APP) in the hippocampus, and to provide a model for the study of disease mechanisms and drug development. Methods Twenty-four 12-week-old SPF-grade female SD rats were randomly divided into a blank control group, a virus control group and an experimental group, with eight rats in each group; among them, the experimental group received a stereotaxic injection of adeno-associated virus (AAV) carrying the human triple mutant APP and NanoLuc luciferase genes into the hippocampus. In vivo imaging was used to observe viral expression in the brains of rats in each group, the novel object recognition test was used to assess the recognition memory of the rats in each group, real-time fluorescent quantitative PCR was used to detect the expression level of the APP gene, HE staining was used to examine the brain histopathology, Nissl staining was used to assess the hippocampal lesions, and immunohistochemistry was used to detect the deposition of amyloid β-protein (Aβ). Results In vivo imaging showed that reporter fluorescence was detected in the brains of rats in both experimental and virus control groups. Fluorescence quantitative PCR showed that the expression level of the APP gene was significantly increased in the brains of rats in the experimental group (P<0.01). Novel object recognition test revealed that the recognition memory of rats in the experimental group was significantly reduced compared with that of the blank control group (P<0.01). Six months after recombinant AAV virus infection, HE staining and Nissl staining of brain tissues showed that the number of neurons and Nissl bodies in the CA1 region of the hippocampus in the experimental group was reduced and disorganized; immuno-histochemistry testing of the CA1 region of the hippocampus and the pyramidal cell layer of the experimental group revealed prominent brown deposits, indicating Aβ protein deposition. Conclusion The rat model successfully established by stereotaxic injection and AAV-mediated delivery of human triple mutant APP gene exhibits typical AD features, providing a valuable animal model for studying AD pathology and developing drug therapies targeting Aβ protein deposition.
7.Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology
Linlin XIAO ; Yixuan YANG ; Shanshan LI ; Lanshiyu LUO ; Siwei YIN ; Juming SUN ; Wei SHI ; Yiqiang OUYANG ; Xiyi LI
Laboratory Animal and Comparative Medicine 2025;45(3):269-278
Objective To establish a rat model of Alzheimer's disease (AD) expressing human triple mutant amyloid precursor protein (APP) in the hippocampus, and to provide a model for the study of disease mechanisms and drug development. Methods Twenty-four 12-week-old SPF-grade female SD rats were randomly divided into a blank control group, a virus control group and an experimental group, with eight rats in each group; among them, the experimental group received a stereotaxic injection of adeno-associated virus (AAV) carrying the human triple mutant APP and NanoLuc luciferase genes into the hippocampus. In vivo imaging was used to observe viral expression in the brains of rats in each group, the novel object recognition test was used to assess the recognition memory of the rats in each group, real-time fluorescent quantitative PCR was used to detect the expression level of the APP gene, HE staining was used to examine the brain histopathology, Nissl staining was used to assess the hippocampal lesions, and immunohistochemistry was used to detect the deposition of amyloid β-protein (Aβ). Results In vivo imaging showed that reporter fluorescence was detected in the brains of rats in both experimental and virus control groups. Fluorescence quantitative PCR showed that the expression level of the APP gene was significantly increased in the brains of rats in the experimental group (P<0.01). Novel object recognition test revealed that the recognition memory of rats in the experimental group was significantly reduced compared with that of the blank control group (P<0.01). Six months after recombinant AAV virus infection, HE staining and Nissl staining of brain tissues showed that the number of neurons and Nissl bodies in the CA1 region of the hippocampus in the experimental group was reduced and disorganized; immuno-histochemistry testing of the CA1 region of the hippocampus and the pyramidal cell layer of the experimental group revealed prominent brown deposits, indicating Aβ protein deposition. Conclusion The rat model successfully established by stereotaxic injection and AAV-mediated delivery of human triple mutant APP gene exhibits typical AD features, providing a valuable animal model for studying AD pathology and developing drug therapies targeting Aβ protein deposition.
8.Research progress of ozone therapy in treatment of novel coronavirus infection
Yixuan WANG ; Yang HE ; Ke HU
Chinese Journal of General Practitioners 2024;23(1):81-85
Recent studies have shown that ozone therapy, a widely used immunotherapy in various diseases, can play a therapeutic role in the novel coronavirus infection by enhancing lung function, reducing inflammatory reactions, and bolstering immune system performance. This article reviews the pathophysiological basis of novel coronavirus infection and the mechanisms involved in ozone therapy for its treatment, also summarizes the clinical evidence and safety assessment of ozone therapy in combating novel coronavirus infections.
9.Changes of corneal densitometry in patients with keratoconus after corneal collagen cross-linking
Shuai LI ; Yang GAO ; Limei MA ; Rui LI ; Yixuan QIN ; Caihong SUN ; Yu HAN ; Jinjin ZHANG ; Wenjuan ZHUANG
International Eye Science 2024;24(12):1954-1958
AIM: To observe the changes of corneal densitometry(CD)in patients with keratoconus after corneal cross-linking(CXL).METHODS: Retrospective study. A total of 32 patients(43 eyes)with keratoconus in Ningxia Eye Hospital from April 2020 to April 2022 were selected. Pentacam analysis system divided the cornea into three layers: anterior 120 μm, middle layer and posterior 60 μm, and divides it into five regions with diameters of 0-2, 2-6, 6-10, 10-12 mm and full diameter according to the diameter, and measures the CD in different ranges. The changes of CD were compared before operation and at 1, 3 and 6 mo after operation.RESULTS: There were differences in uncorrected visual acuity, best corrected visual acuity and intraocular pressure before and 6 mo after operation(all P<0.05), and there was no difference in corneal endothelial cells(P=0.477). CD reached its peak at 1 mo after operation, and decreased at 3 mo and 6 mo after operation, but it was still higher than that before operation. There is a significant positive correlation between CD and Kmax in the anterior layer and the whole layer(r=0.164, P=0.016; r=0.152, P=0.023).CONCLUSION: The values of CD peaked at 1 mo after CXL, then it gradually decreased, tending to become stable at 6 mo postoperatively.
10.Difference in Adverse Reactions between Colorectal Cancer Patients with or without Spleen-kidney Yang Deficiency Syndrome after Oxaliplatin-containing Chemotherapy
Yifan LI ; Yipang ZHAO ; Boyuan HAN ; Yixuan LIU ; Sixuan XING ; Wenjing YANG ; Qing ZHANG
Journal of Traditional Chinese Medicine 2024;65(19):2010-2017
ObjectiveTo compare the difference in adverse reactions after oxaliplatin-containing chemotherapy between colorectal cancer patients with or without spleen-kidney yang deficiency syndrome. MethodsA retrospective study was conducted using the electronic medical records of Beijing Hospital of Traditional Chinese Medicine, Capital Medical University. A total of 483 colorectal cancer patients from January 1, 2009 to December 31, 2022 were selected. Patients were divided into two groups based on their syndrome types, that was spleen-kidney yang deficiency syndrome (SKYDS) group (130 cases) and non-SKYDS group (353 cases). The incidence of adverse reactions including gastrointestinal reactions, liver damage, bone marrow suppression, and peripheral neurotoxicity after completing 2, 4, 6, and more than 6 cycles of chemotherapy was compared between the two groups. Univariate and multivariate logistic regression analyses were used to analyze the associations of age, gender, alcohol history, primary tumor location, tumor differentiation, tumor staging, chemotherapy courses, and syndrome types with the occurrence of gastrointestinal adverse reactions, liver function damage, bone marrow suppression and peripheral neurotoxicity in colorectal cancer patients who have completed 2, 4, 6 and more than 6 cycles of oxaliplatin-containing chemotherapy. ResultsThere were significant differences in the occurrence of gastrointestinal reactions after completing 2, 4, 6 and more than 6 cycles of chemotherapy between the two groups (P<0.01), with much more severe conditions in SKYDS group than non-SKYDS group (P<0.01). There was no significant difference in liver function damage and bone marrow suppression between groups (P>0.05). There were statistically significant differences in the occurrence of peripheral neurotoxicity after completion of 2 cycles (P=0.044), 4 cycles (P=0.002) and more than 6 cycles (P<0.001) of chemothe-rapy, with higher rate in SKYDS group than the non-SKYDS group (P<0.05). Univariate analysis showed that female, patients with stage Ⅲ tumors and patients having completed ≥ 6 cycles of chemotherapy had a higher incidence of bone marrow suppression (P<0.05), and patients with SKYDS had a higher incidence of gastrointestinal reactions (P<0.001). Patients with a history of drinking, stage Ⅳ cancer, and ≥6 cycles of chemotherapy had a higher incidence of liver function injury (P<0.05). Patients with stage Ⅲ cancer, ≥6 cycles of chemotherapy, and SKYDS had a higher incidence of peripheral neurotoxicity (P<0.05). Multivariate analysis showed that the risk factor for bone marrow suppression was chemotherapy ≥6 cycles (P=0.001), and SKYDS was the risk factor for gastrointestinal reaction (P<0.001). The risk factor for liver function damage was tumor stage Ⅳ (P=0.001) and SKYDS (P=0.039). All variables had no significant correlation with the occurrence of peripheral neurotoxicity. ConclusionFor colorectal cancer patients, being diagnosed with SKYDS is a risk factor for developing gastrointestinal adverse reactions and peripheral neurotoxicity following chemotherapy with an oxaliplatin-based regimen.

Result Analysis
Print
Save
E-mail