1.Progress of probiotics and allergic diseases in children
International Journal of Pediatrics 2022;49(7):483-487
Intestinal microbiota plays an important role in the establishment and maturation of the host immune system.In recent years, it has been found that the disorder of intestinal microecology is related to the occurrence and development of allergic diseases in children.Probiotics can improve intestinal microecological disorders, and its relationship with the prevention and treatment of allergic diseases is currently a research hotspot.In this review, we review the research progress on the relationship between intestinal microbiota and allergic diseases in children, the immunomodulatory mechanisms of probiotics rebalancing intestinal microecology, and the relationship between Lactobacillus paracei and allergic diseases such as atopic dermatitis, allergic rhinitis, and bronchial asthma.
2.Progress of peanut allergy in children
International Journal of Pediatrics 2021;48(9):610-614
Epidemiology suggests an increasing incidence of peanut allergy and is usually associated with severe allergic reactions.A variety of inflammatory mechanisms are involved in peanut allergy.The specific diagnosis of peanut allergy is particularly difficult due to the co-sensitization between peanut and other components, but the use of component-resolved diagnostic can greatly improve the diagnostic level, especially the distinction between primary and secondary peanut allergy.Basophil activation tests are also thought to be helpful in diagnosis.In terms of treatment, instead of avoiding all nuts, specific immunotherapy and the introduction of peanuts early in life have been proposed.This paper reviews the latest research progress on peanut allergy in children.
3.MicroRNA-125b and cancer
Qianqian LIU ; Xiaolan HE ; Lin TANG ; Yixiao YUAN ; Shun QIU ; Lincan DUAN
Journal of International Oncology 2020;47(2):90-92
MicroRNA-125b (miR-125b) has been proved to be closely related to a variety of cancers in recent years, such as lung cancer, digestive system cancers, blood cancers, etc. miR-125b plays a key role in the occurrence and development of cancers, which can evaluate the therapeutic effects of various treatment methods of cancers by detecting the expression of miR-125b, and can assist in the diagnosis of cancers. It is of great significance to explore the mechanism of miR-125b in cancers for the treatment.
4.Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation.
Chengying MA ; Kaige YAN ; Dan TAN ; Ningning LI ; Yixiao ZHANG ; Yi YUAN ; Zhifei LI ; Meng-Qiu DONG ; Jianlin LEI ; Ning GAO
Protein & Cell 2016;7(3):187-200
The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.
Crystallography, X-Ray
;
GTP Phosphohydrolases
;
chemistry
;
metabolism
;
Humans
;
Protein Domains
;
Ribosome Subunits, Large, Eukaryotic
;
chemistry
;
metabolism
;
Saccharomyces cerevisiae
;
chemistry
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
chemistry
;
metabolism
5.Dayuanyin Regulates TLR/MAPK/NF-κB Pathway for Preventing and Treating Acute Lung Injury Induced by H1N1 Infection
Chengze LI ; Fuhao CHU ; Yuan LI ; Yunze LIU ; Haocheng ZHENG ; Sici WANG ; Yixiao GU ; Wanhong ZHU ; Ruoshi ZHANG ; Xingjian SONG ; Cong GAI ; Xia DING
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):52-60
ObjectiveTo investigate the therapeutic effect of Dayuanyin on acute lung injury induced by H1N1 infection and decipher the potential mechanism. MethodThe constituents in Dayuanyin were analyzed by ultra-high performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Forty-eight female BALB/c mice were randomized into normal, model, oseltamivir (19.5 mg·kg-1), and low-, medium-, and high-dose (2.73, 5.46, 10.92 g·kg-1) Dayuanyin groups. The normal and model groups were administrated with deionized water by gavage, and the other groups were administrated with the corresponding drugs by gavage. On day 3 of drug administration, the normal group received nasal inhalation of normal saline, and the other groups were inoculated intranasally with A/RP/8/34 (H1N1) for the modeling of influenza virus infection. Mice were administrated with drugs continuously for 7 days and weighed daily. Sampling was performed 12 h after the last administration, and the lung tissue was weighed to calculate the lung index. Hematoxylin-eosin staining was performed to observe the pathological and morphological changes of the lung tissue and bronchi. The cytometric bead array (CBA) was used to measure the serum levels of interferon-gamma (IFN-γ), C-X-C motif ligand 1 (CXCL1), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2), interleukin-12p70 (IL-12p70), chemokine ligand 5 (CCL5), interleukin-1β (IL-1β), chemokine (C-X-C motif) ligand 10 (CXCL10), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-10 (IL-10), interferon-beta (IFN-β), interferon-alpha (IFN-α), and interleukin-6 (IL-6). According to the results of mass spectrometry and network pharmacology, we analyzed the mechanism of Dayuanyin in treating acute lung injury caused by H1N1. The protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and their phosphorylated forms were determined by Western blot. The mRNA levels of myeloid differentiation factor 88 (MyD88), Toll-like receptor 3 (TLR3), Toll-like receptor 7 (TLR7), and Toll-like receptor 8 (TLR8) in the lung tissue were measured by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultA total of 57 compounds, including paeoniflorin and baicalein, were detected in Dayuanyin. Compared with the normal group, the model group showed decreased body weight (P<0.01), lung edema and hemorrhage, increased lung index (P<0.01), and elevated levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). Compared with the model group, Dayuanyin attenuated alveolar wall thickening, capillary congestion, and immune cell infiltration, reduced the alterations in body weight and lung index (P<0.01), and down-regulated the protein levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). A total of 57 key genes were predicted by network pharmacological analysis, of which the MAPK signaling pathway was the main target signaling pathway. Compared with the normal group, the model group showed up-regulation in the protein levels of phosphorylation (p)-ERK1/2, p-p38 MAPK, and p-NF-κB (P<0.01) and the mRNA levels of TLR7, TLR8, MyD88, and TLR3 (P<0.05, P<0.01). Compared with the model group, Dayuanyin lowered the phosphorylation levels of ERK1/2, p38 MAPK, and NF-κB p65 in a dose-dependent manner (P<0.01) and down-regulated the mRNA levels of TLR3, TLR7, TLR8, and MyD88 (P<0.01). ConclusionDayuanyin can prevent and control H1N1 infection-induced acute lung injury by inhibiting the TLR/MAPK/NF-κB signaling pathway.