1.Comparative analysis of magnetic resonance imaging for purulent meningitis in premature and full term infants
Yixian CHEN ; Yongyan SHI ; Jianhua FU ; Xindong XUE
Chinese Journal of Applied Clinical Pediatrics 2021;36(14):1068-1073
Objective:To compare the head magnetic resonance imaging (MRI) changes and the distribution of pathogens of purulent meningitis in premature and full term infants.Methods:This retrospective study assessed clinical data in 43 cases of neonatal purulent meningitis with positive blood or cerebrospinal fluid bacterial culture admitted to the Neonatal Ward of Shengjing Hospital of China Medical University from January 2012 to November 2019.According to the gestational age, those patients were divided into the premature infant group and the full term infant group.The general situation, head MRI and pathogen characteristics of both groups were compared.Results:The incidence of premature rupture of fetal membranes in the premature infant group was higher than that in the full term infant group [50.00%(13/26 cases) vs.5.88%(1/17 cases)], the rate of cesarean section in the premature infant group was higher than that in the term infant group [61.54%(16/26 cases) vs.23.53%(4/17 cases)], and there were significant difference between the 2 groups ( χ2=9.011 and 5.969, respectively, all P<0.05). There was no significant difference between 2 groups in age of onset [(9.8±7.0) d vs.(8.9±5.5) d], diagnosis[(13.0±7.1) d vs.(10.2±6.1) d] and examination [(16.1±7.9) d vs.(13.1±6.5) d] (all P>0.05). The top 3 pathogens were Klebsiella pneumonia ( K. pneumoniae) in 14 cases, Escherichia coli ( E. coli) in 11 cases and Streptococcus agalactiae (GBS) in 7 cases. K. pneumoniae was the most common pathogen in premature infants, and GBS was the most common pathogen in term infants.In the first MRI, white matter injury (WMI) was the most common disease (19 cases), the abnormal rate of MRI in the premature infant group was 65.38% (17/26 cases), the incidence of intracranial hemorrhage in the premature infant group was higher than that in the term infant group, the abnormal rate of MRI in the term infant group was 52.94% (9/17 cases), and the incidence of cerebral infarction in the term infant group was higher than that in the premature infant group.The MRI positive rates of meningitis caused by K. pneumoniae, E. coli and GBS were 57.14% (8/14 cases), 72.73% (8/11 cases) and 71.43% (5/7 cases), respectively.Infants with K. pneumoniae infections suffered from the main complications of WMI and intracranial hemorrhage.Infants infected with E. coli were prone to WMI in the early stage and hydrocephalus in the late stage.Infants with GBS were prone to WMI and cerebral infarction in the early stage and cerebromalacia in the late stage. Conclusions:There were some differences in the distribution of pathogenic bacteria and head MRI changes between premature infants and term infants, and head MRI of purulent meningitis caused by different pathogenic bacteria.A thorough understanding of the distribution of pathogens and the characteristics of head MRI in premature and full term infants contributed to the early diagnosis, treatment and prognosis of this disease.
2.Electroacupuncture improves cognitive function in a rat model of mild traumatic brain injury by regulating the SIRT-1/PGC-1α/mitochondrial pathway
Bo JIN ; Yemei GAO ; Yixian FU ; Suxin ZHANG ; Ke ZHANG ; Yibing SU
Chinese Medical Journal 2024;137(6):711-719
Background::Mild traumatic brain injury (mTBI) is a common neurological trauma that can lead to cognitive impairment. The sirtuin-1 (SIRT-1)/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) pathway has been reported to have neuroprotective effects in rats with craniocerebral injury. We evaluated potential mechanisms underlying electroacupuncture-mediated recovery of cognitive function after mTBI, focusing on the SIRT-1/PGC-1α/mitochondrial pathway.Methods::We included forty 6-week-old male Sprague-Dawley rats in this study. Rats were randomly divided into four groups: controlled cortical impactor (CCI, n = 10), sham operation (sham, n = 10), electroacupuncture-treated CCI (CCI+EA, n = 10), and electroacupuncture-treated sham (sham+EA, n = 10) group. Randomization was performed by assigning a random number to each rat and using a random number table. The mTBI rat model was established using a controllable cortical impactor. Electroacupuncture therapy was performed on the back of rats, by inserting acupuncture needles to the specific acupoints and setting appropriate parameters for treatment. We evaluated spatial learning and memory functions with the Morris water maze test. We performed quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, adenosine triphosphate (ATP) determination, and mitochondrial respiratory chain complex I (MRCC I) determination on rat hippocampal tissue. We analyzed SIRT-1/PGC-1α expression levels and the results of mitochondrial function assays, and compared differences between groups using bilateral Student’s t-tests. Results::Compared with the sham group, SIRT-1/PGC-1α expression was downregulated in the hippocampus of CCI group ( P <0.01). Although this expression was upregulated following electroacupuncture, it did not reach the levels observed in the sham group ( P <0.05). Compared with the sham group, MRCC I and ATP levels in the CCI group were significantly reduced, and increased after electroacupuncture ( P <0.01). In the Morris water maze, electroacupuncture reduced the incubation period of rats and increased average speed and number of crossing platforms ( P <0.05). Conclusion::Electroacupuncture may improve cognitive function in the mTBI rat model by regulating the SIRT-1/PGC-1α/mitochondrial pathway.
3.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
4.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
5.Tailored core‒shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy.
Biyuan WU ; Jintao FU ; Yixian ZHOU ; Sulan LUO ; Yiting ZHAO ; Guilan QUAN ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2020;10(11):2198-2211
Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal-organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The
6.A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility.
Yixian ZHOU ; Boyi NIU ; Biyuan WU ; Sulan LUO ; Jintao FU ; Yiting ZHAO ; Guilan QUAN ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2020;10(12):2404-2416
Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CD-MOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation,
7.NAMPT-targeting PROTAC promotes antitumor immunity via suppressing myeloid-derived suppressor cell expansion.
Ying WU ; Congying PU ; Yixian FU ; Guoqiang DONG ; Min HUANG ; Chunquan SHENG
Acta Pharmaceutica Sinica B 2022;12(6):2859-2868
Nicotinamide phosphoribosyl transferase (NAMPT) is considered as a promising target for cancer therapy given its critical engagement in cancer metabolism and inflammation. However, therapeutic benefit of NAMPT enzymatic inhibitors appears very limited, likely due to the failure to intervene non-enzymatic functions of NAMPT. Herein, we show that NAMPT dampens antitumor immunity by promoting the expansion of tumor infiltrating myeloid derived suppressive cells (MDSCs) via a mechanism independent of its enzymatic activity. Using proteolysis-targeting chimera (PROTAC) technology, PROTAC A7 is identified as a potent and selective degrader of NAMPT, which degrades intracellular NAMPT (iNAMPT) via the ubiquitin-proteasome system, and in turn decreases the secretion of extracellular NAMPT (eNAMPT), the major player of the non-enzymatic activity of NAMPT. In vivo, PROTAC A7 efficiently degrades NAMPT, inhibits tumor infiltrating MDSCs, and boosts antitumor efficacy. Of note, the anticancer activity of PROTAC A7 is superior to NAMPT enzymatic inhibitors that fail to achieve the same impact on MDSCs. Together, our findings uncover the new role of enzymatically-independent function of NAMPT in remodeling the immunosuppressive tumor microenvironment, and reports the first NAMPT PROTAC A7 that is able to block the pro-tumor function of both iNAMPT and eNAMPT, pointing out a new direction for the development of NAMPT-targeted therapies.