1.Treatment of Edema with Zhulingtang: A Review
Yinuo LI ; Liheng LI ; Yufei ZHANG ; Shurui ZHAO ; Youcai YUAN ; Jie GAO ; Renshuai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):266-275
Edema, as a common pathological phenomenon, is essentially the abnormal accumulation of body fluids in the interstitial spaces of human tissues and is often a direct manifestation of various underlying diseases, such as heart failure, impaired renal filtration function, or liver metabolic disorders. In the Western medical system, strategies for treating edema primarily focus on the use of diuretics to promote the excretion of excess fluid in the body, while simultaneously addressing the underlying causes through targeted treatment. However, long-term reliance on the use of diuretics may lead to a decrease in drug sensitivity and induce side effects, including electrolyte disorders such as hypokalemia and hypercalcemia, posing a potential threat to patients' overall health. Compared with Western medicine, traditional Chinese medicine (TCM) has demonstrated well-recognized and sustained efficacy in treating edema with its unique theoretical system. Zhulingtang, as a classic and commonly used TCM formula, is widely applied as it can effectively relieve edema and related symptoms. In recent years, ongoing in-depth studies on the treatment of edema with Zhulingtang have revealed multiple mechanisms of action of Zhulingtang, including the regulation of water metabolism and the reduction of inflammatory responses, thereby providing a solid theoretical basis for clinical practice. This review summarized the research progress on the treatment of edema with Zhulingtang in recent years and analyzed the active ingredients and action pathways of Zhulingtang. Additionally, the primary mechanisms of action and efficacy were systematically analyzed, so as to provide references for the clinical application of Zhulingtang in treating various types of edema, such as cardiogenic edema, renal edema, and hepatogenic edema. This review aims to offer theoretical support and practical guidance for clinicians in deciding treatment approaches, as well as references for subsequent in-depth studies, thereby promoting further development of TCM in the treatment of edema.
2.Treatment of Edema with Zhulingtang: A Review
Yinuo LI ; Liheng LI ; Yufei ZHANG ; Shurui ZHAO ; Youcai YUAN ; Jie GAO ; Renshuai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):266-275
Edema, as a common pathological phenomenon, is essentially the abnormal accumulation of body fluids in the interstitial spaces of human tissues and is often a direct manifestation of various underlying diseases, such as heart failure, impaired renal filtration function, or liver metabolic disorders. In the Western medical system, strategies for treating edema primarily focus on the use of diuretics to promote the excretion of excess fluid in the body, while simultaneously addressing the underlying causes through targeted treatment. However, long-term reliance on the use of diuretics may lead to a decrease in drug sensitivity and induce side effects, including electrolyte disorders such as hypokalemia and hypercalcemia, posing a potential threat to patients' overall health. Compared with Western medicine, traditional Chinese medicine (TCM) has demonstrated well-recognized and sustained efficacy in treating edema with its unique theoretical system. Zhulingtang, as a classic and commonly used TCM formula, is widely applied as it can effectively relieve edema and related symptoms. In recent years, ongoing in-depth studies on the treatment of edema with Zhulingtang have revealed multiple mechanisms of action of Zhulingtang, including the regulation of water metabolism and the reduction of inflammatory responses, thereby providing a solid theoretical basis for clinical practice. This review summarized the research progress on the treatment of edema with Zhulingtang in recent years and analyzed the active ingredients and action pathways of Zhulingtang. Additionally, the primary mechanisms of action and efficacy were systematically analyzed, so as to provide references for the clinical application of Zhulingtang in treating various types of edema, such as cardiogenic edema, renal edema, and hepatogenic edema. This review aims to offer theoretical support and practical guidance for clinicians in deciding treatment approaches, as well as references for subsequent in-depth studies, thereby promoting further development of TCM in the treatment of edema.
3.Urolithin A mediates p38/MAPK pathway to inhibit osteoclast activity
Haoran HUANG ; Yinuo FAN ; Wenxiang WEI-YANG ; Mengyu JIANG ; Hanjun FANG ; Haibin WANG ; Zhenqiu CHEN ; Yuhao LIU ; Chi ZHOU
Chinese Journal of Tissue Engineering Research 2024;28(8):1149-1154
BACKGROUND:Overactive osteoclasts disrupt bone homeostasis and play a bad role in the pathological mechanisms of related skeletal diseases,such as osteoporosis,fragility fractures,and osteoarthritis.Studies have confirmed that ellagic acid and ellagtannin have the potential to inhibit osteoclast differentiation.As their natural metabolites,urolithin A has antioxidant,anti-inflammatory,anti-proliferative and anti-cancer effects,but its effect on osteoclast differentiation and its underlying molecular mechanisms remain unclear. OBJECTIVE:To explore the effect of urolithin A on osteoclast differentiation induced by receptor activator for nuclear factor-κB ligand and its mechanism. METHODS:Mouse mononuclear macrophage leukemia cells(RAW264.7)that grew stably were cultured in vitro.Toxicity of urolithin A(0,0.1,0.5,1.5,2.5 μmol/L)to RAW264.7 cells were detected by cytotoxic MTS assay to screen out the safe concentration.Different concentrations of urolithin A were used again to intervene with receptor activator for nuclear factor-κB ligand-induced differentiation of RAW264.7 cells in vitro.Then,tartrate-resistant acid phosphatase staining and F-actin ring and nucleus staining were performed to observe its effect on the formation and function of osteoclasts.Finally,the expressions of urolithin A on upstream and downstream genes and proteins in the MAPK signaling pathway were observed by western blot and RT-qPCR assays. RESULTS AND CONCLUSION:Urolithin A inhibited osteoclast differentiation and F-actin ring formation in a concentration-dependent manner and 2.5 μmol/L had the strongest inhibitory effect.Urolithin A inhibited the mRNA expression of Nfatc1,Ctsk,Mmp9 and Atp6v0d2 and the protein synthesis of Nfatc1 and Ctsk,related to osteoclast formation and bone resorption.Urolithin A inhibited the activity of osteoclasts by downregulating the phosphorylation of p38 protein to inhibit the mitogen-activated protein kinase signaling pathway.
4.Advances in the Study of the Signal Transducer and Activator of Transcriptions Family and Hearing Loss
Silong WANG ; Ke WU ; Yinuo SUN ; Meixu JIANG ; Haiyan YIN ; Yan GUO
Journal of Audiology and Speech Pathology 2024;32(6):549-553
Hearing loss is one of the most common neurosensory disorders in humans,severely affecting pa-tients'quality of life with lack of ideal treatments.Its pathogenesis is related to oxidative stress,inflammation and apoptosis in the inner ear.Recent studies have demonstrated that members of the signal transducer and activator of transcriptions(STATs)family are involved in regulating gene expression in auditory cells during inner ear develop-ment and physiological activities such as apoptosis,oxidative stress,inflammation and autophagy during auditory disorders.In this paper,we review the research on STATs in inner ear development and hearing loss,and elucidate their specific molecular mechanisms,aiming to provide theoretical guidance and direction for the prevention and treatment of hearing loss.
5.A multi-case study on path suggestions for the internationalization of Chinese patent medicines based on grounded theory
Yinuo SUN ; Rizhen WANG ; Yuyang ZHANG ; Yangmu HUANG
International Journal of Traditional Chinese Medicine 2024;46(10):1271-1276
Due to multiple factors such as the closed research and development (R&D) system and differences in international mainstream regulatory standards, the internationalization of Chinese patent medicines has been weakly promoted. Multi-case analysis based on grounded theory can identify the key factors that promote the internationalization of Chinese patent medicines in each link, so as to put forward suggestions for promoting the internationalization of Chinese patent medicines. By retrieving the research literature on the internationalization of Chinese patent medicines included in CNKI, and further searching the official websites of the corresponding enterprises, as well as the news reports, comments and analysis of related events on official websites such as Xinhua News Agency, People's Network and China Medical Device Network, 27 textual materials were obtained, 6 classic cases of international registration of Chinese patent medicines were summarized, and three-level coding was used to organize and analyze them level by level. 25 initial categories and 7 main categories were extracted, and 4 core categories were finally summarized: promote R&D and promotion in advantageous areas based on international needs, build a quality control system in line with the international standards, select appropriate national markets based on international demand, and carry out international collaborative R&D in the whole life cycle. Based on this, suggestions were put forward: in order to promote the internationalization process of Chinese patent medicines, priority disease types and product formulations should be determined based on demand during the drug discovery phase; full cycle international cooperation in drug R&D should be carried out; a Chinese patent medicines and simple preparations supervision system that is in line with the international standards in the link of drug quality supervision should be constructed; countries with flexible and experienced regulatory rules in the drug approval and marketing process should be chosen.
6.Cisplatin-induced PANDAR-Chemo-EVs contribute to a more aggressive and chemoresistant ovarian cancer phenotype through the SRSF9-SIRT4/ SIRT6 axis
Hao WANG ; Yinuo LI ; Yanan WANG ; Xiumin SHANG ; Zhongxin YAN ; Shengli LI ; Wei BAO
Journal of Gynecologic Oncology 2024;35(2):e13-
Objective:
We previously elucidated that long non-coding RNA Promoter of CDKN1A Antisense DNA damage Activated RNA (PANDAR) as a p53-dependent oncogene to promote cisplatin resistance in ovarian cancer (OC). Intriguingly, high level of p53-independent PANDAR was found in cisplatin-resistant patients with p53 mutation. Here, our study probed the new roles and the underlying mechanisms of PANDAR in p53-mutant OC cisplatin-resistance.
Methods:
A2780 and A2780-DDP cells were served as OC cisplatin-sensitive and cisplatinresistant cells. HO-8910PM cells were subjected to construct chemotherapy-induced extracellular vesicles (Chemo-EVs). Transmission electron microscopy (TEM) and nanoparticle tracking analysis were employed to evaluate Chemo-EVs. Cell viability was assessed using cell counting kit-8 and colony formation assays. Cell apoptosis was assessed using Annexin V and propidium iodide staining. The relationships between PANDAR, serine and arginine-rich premRNA splicing factor 9 (SRSF9) were verified by RNA immunoprecipitation and fluorescence in situ hybridization. Tumor xenograft experiment was employed to evaluate the effects of PANDAR-Chemo-EVs on OC cisplatin-resistance in vivo. Immunofluorescent staining and immunohistochemistry were performed in tumor tissue.
Results:
PANDAR level increased in OC patients with p53-mutation. PANDAR efflux enacted via exosomes under cisplatin conditions. Additionally, exosomes from OC cell lines carried PANDAR, which significantly increased cell survival and chemoresistance in vitro and tumor progression and metastasis in vivo. During cisplatin-induced stress, SRSF9 was recruited to nuclear bodies by increased PANDAR and muted apoptosis in response to cisplatin. Besides, SRSF9 significantly increased the ratio of SIRT4/SIRT6 mRNA in OC.
Conclusion
Cisplatin-induced exosomes transfer PANDAR and lead to a rapid adaptation of OC cell survival through accumulating SRSF9 following cisplatin stress exposure.
7.Cisplatin-induced PANDAR-Chemo-EVs contribute to a more aggressive and chemoresistant ovarian cancer phenotype through the SRSF9-SIRT4/ SIRT6 axis
Hao WANG ; Yinuo LI ; Yanan WANG ; Xiumin SHANG ; Zhongxin YAN ; Shengli LI ; Wei BAO
Journal of Gynecologic Oncology 2024;35(2):e13-
Objective:
We previously elucidated that long non-coding RNA Promoter of CDKN1A Antisense DNA damage Activated RNA (PANDAR) as a p53-dependent oncogene to promote cisplatin resistance in ovarian cancer (OC). Intriguingly, high level of p53-independent PANDAR was found in cisplatin-resistant patients with p53 mutation. Here, our study probed the new roles and the underlying mechanisms of PANDAR in p53-mutant OC cisplatin-resistance.
Methods:
A2780 and A2780-DDP cells were served as OC cisplatin-sensitive and cisplatinresistant cells. HO-8910PM cells were subjected to construct chemotherapy-induced extracellular vesicles (Chemo-EVs). Transmission electron microscopy (TEM) and nanoparticle tracking analysis were employed to evaluate Chemo-EVs. Cell viability was assessed using cell counting kit-8 and colony formation assays. Cell apoptosis was assessed using Annexin V and propidium iodide staining. The relationships between PANDAR, serine and arginine-rich premRNA splicing factor 9 (SRSF9) were verified by RNA immunoprecipitation and fluorescence in situ hybridization. Tumor xenograft experiment was employed to evaluate the effects of PANDAR-Chemo-EVs on OC cisplatin-resistance in vivo. Immunofluorescent staining and immunohistochemistry were performed in tumor tissue.
Results:
PANDAR level increased in OC patients with p53-mutation. PANDAR efflux enacted via exosomes under cisplatin conditions. Additionally, exosomes from OC cell lines carried PANDAR, which significantly increased cell survival and chemoresistance in vitro and tumor progression and metastasis in vivo. During cisplatin-induced stress, SRSF9 was recruited to nuclear bodies by increased PANDAR and muted apoptosis in response to cisplatin. Besides, SRSF9 significantly increased the ratio of SIRT4/SIRT6 mRNA in OC.
Conclusion
Cisplatin-induced exosomes transfer PANDAR and lead to a rapid adaptation of OC cell survival through accumulating SRSF9 following cisplatin stress exposure.
8.Cisplatin-induced PANDAR-Chemo-EVs contribute to a more aggressive and chemoresistant ovarian cancer phenotype through the SRSF9-SIRT4/ SIRT6 axis
Hao WANG ; Yinuo LI ; Yanan WANG ; Xiumin SHANG ; Zhongxin YAN ; Shengli LI ; Wei BAO
Journal of Gynecologic Oncology 2024;35(2):e13-
Objective:
We previously elucidated that long non-coding RNA Promoter of CDKN1A Antisense DNA damage Activated RNA (PANDAR) as a p53-dependent oncogene to promote cisplatin resistance in ovarian cancer (OC). Intriguingly, high level of p53-independent PANDAR was found in cisplatin-resistant patients with p53 mutation. Here, our study probed the new roles and the underlying mechanisms of PANDAR in p53-mutant OC cisplatin-resistance.
Methods:
A2780 and A2780-DDP cells were served as OC cisplatin-sensitive and cisplatinresistant cells. HO-8910PM cells were subjected to construct chemotherapy-induced extracellular vesicles (Chemo-EVs). Transmission electron microscopy (TEM) and nanoparticle tracking analysis were employed to evaluate Chemo-EVs. Cell viability was assessed using cell counting kit-8 and colony formation assays. Cell apoptosis was assessed using Annexin V and propidium iodide staining. The relationships between PANDAR, serine and arginine-rich premRNA splicing factor 9 (SRSF9) were verified by RNA immunoprecipitation and fluorescence in situ hybridization. Tumor xenograft experiment was employed to evaluate the effects of PANDAR-Chemo-EVs on OC cisplatin-resistance in vivo. Immunofluorescent staining and immunohistochemistry were performed in tumor tissue.
Results:
PANDAR level increased in OC patients with p53-mutation. PANDAR efflux enacted via exosomes under cisplatin conditions. Additionally, exosomes from OC cell lines carried PANDAR, which significantly increased cell survival and chemoresistance in vitro and tumor progression and metastasis in vivo. During cisplatin-induced stress, SRSF9 was recruited to nuclear bodies by increased PANDAR and muted apoptosis in response to cisplatin. Besides, SRSF9 significantly increased the ratio of SIRT4/SIRT6 mRNA in OC.
Conclusion
Cisplatin-induced exosomes transfer PANDAR and lead to a rapid adaptation of OC cell survival through accumulating SRSF9 following cisplatin stress exposure.
9.Discovery of novel phosphodiesterase-1 inhibitors for curing vascular dementia: Suppression of neuroinflammation by blocking NF-κB transcription regulation and activating cAMP/CREB axis.
Qian ZHOU ; Meiling LE ; Yiyi YANG ; Wenjuan WANG ; Yuqi HUANG ; Quan WANG ; Yijing TIAN ; Meiyan JIANG ; Yong RAO ; Hai-Bin LUO ; Yinuo WU
Acta Pharmaceutica Sinica B 2023;13(3):1180-1191
Vascular dementia (VaD) is the second commonest type of dementia which lacks of efficient treatments currently. Neuroinflammation as a prominent pathological feature of VaD, is highly involved in the development of VaD. In order to verify the therapeutic potential of PDE1 inhibitors against VaD, the anti-neuroinflammation, memory and cognitive improvement were evaluated in vitro and in vivo by a potent and selective PDE1 inhibitor 4a. Also, the mechanism of 4a in ameliorating neuroinflammation and VaD was systematically explored. Furthermore, to optimize the drug-like properties of 4a, especially for metabolic stability, 15 derivatives were designed and synthesized. As a result, candidate 5f, with a potent IC50 value of 4.5 nmol/L against PDE1C, high selectivity over PDEs, and remarkable metabolic stability, efficiently ameliorated neuron degeneration, cognition and memory impairment in VaD mice model by suppressing NF-κB transcription regulation and activating cAMP/CREB axis. These results further identified PDE1 inhibition could serve as a new therapeutic strategy for treatment of VaD.
10.Rac1 promotes the formation of heterotypic cell-in-cell structure.
Tao HU ; Pengfei FENG ; Haoyuan LI ; Lulin ZHOU ; Zubiao NIU ; Yinuo HUANG ; Xiaoning WANG ; Chenxi WANG ; Hui LIU ; Chengjun WU
Chinese Journal of Biotechnology 2023;39(10):4123-4134
Heterotypic cell-in-cell structures (heCICs) are closely related to tumor development and progression, and have become a new frontier in life science research. Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the classic Rho GTPase, which plays a key role in regulating the cytoskeleton and cell movement. To investigate the role and mechanism of Rac1 in the formation of heCICs, tumor cells and immune killer cells were labeled with cell-tracker, respectively, to establish the heCICs model. Upon treatment with the Rac1 inhibitor NSC23766, the formation of heCICs between tumor and immune cells was significantly reduced. The plasmid pQCXIP-Rac1-EGFP constructed by gene cloning was packaged into pseudoviruses that subsequently infect tumor cells to make cell lines stably expressing Rac1. As a result, the formation of heCICs was significantly increased upon Rac1 overexpression. These results demonstrated a promotive role of Rac1 in heCICs formation, which may facilitate treating cell-in-cell related diseases, such as tumors, by targeting Rac1.

Result Analysis
Print
Save
E-mail