1.Urolithin A mediates p38/MAPK pathway to inhibit osteoclast activity
Haoran HUANG ; Yinuo FAN ; Wenxiang WEI-YANG ; Mengyu JIANG ; Hanjun FANG ; Haibin WANG ; Zhenqiu CHEN ; Yuhao LIU ; Chi ZHOU
Chinese Journal of Tissue Engineering Research 2024;28(8):1149-1154
BACKGROUND:Overactive osteoclasts disrupt bone homeostasis and play a bad role in the pathological mechanisms of related skeletal diseases,such as osteoporosis,fragility fractures,and osteoarthritis.Studies have confirmed that ellagic acid and ellagtannin have the potential to inhibit osteoclast differentiation.As their natural metabolites,urolithin A has antioxidant,anti-inflammatory,anti-proliferative and anti-cancer effects,but its effect on osteoclast differentiation and its underlying molecular mechanisms remain unclear. OBJECTIVE:To explore the effect of urolithin A on osteoclast differentiation induced by receptor activator for nuclear factor-κB ligand and its mechanism. METHODS:Mouse mononuclear macrophage leukemia cells(RAW264.7)that grew stably were cultured in vitro.Toxicity of urolithin A(0,0.1,0.5,1.5,2.5 μmol/L)to RAW264.7 cells were detected by cytotoxic MTS assay to screen out the safe concentration.Different concentrations of urolithin A were used again to intervene with receptor activator for nuclear factor-κB ligand-induced differentiation of RAW264.7 cells in vitro.Then,tartrate-resistant acid phosphatase staining and F-actin ring and nucleus staining were performed to observe its effect on the formation and function of osteoclasts.Finally,the expressions of urolithin A on upstream and downstream genes and proteins in the MAPK signaling pathway were observed by western blot and RT-qPCR assays. RESULTS AND CONCLUSION:Urolithin A inhibited osteoclast differentiation and F-actin ring formation in a concentration-dependent manner and 2.5 μmol/L had the strongest inhibitory effect.Urolithin A inhibited the mRNA expression of Nfatc1,Ctsk,Mmp9 and Atp6v0d2 and the protein synthesis of Nfatc1 and Ctsk,related to osteoclast formation and bone resorption.Urolithin A inhibited the activity of osteoclasts by downregulating the phosphorylation of p38 protein to inhibit the mitogen-activated protein kinase signaling pathway.
2.Evaluation method of dynamic postural stability for functional ankle instability based on acceleration signals
Dongxu HUANG ; Yinuo LI ; Qiujie LI ; Chen YANG ; Xianglin WAN
Chinese Journal of Rehabilitation Theory and Practice 2023;29(6):654-666
ObjectiveTo compare the retest reliability and discriminant validity of dynamic postural stability indices for functional ankle instability (FAI) obtained by different algorithms based on acceleration signals at different positions of human body. MethodsFrom April to June, 2021, 21 subjects with unilateral FAI and 21 subjects with normal ankle were recruited. Three inertial sensors were attached to the waist points, knee and ankle positions. The ground reaction force (GRF) and kinematics data of the subjects in multi-direction single leg landing test were collected synchronously by 3D force plate and inertial sensors. The unbounded third order polynomial (UTOP) fitting method was used to calculate the stability time, and the root mean square was used to caculate the stability index. ResultsMost of the indicators calculated based on acceleration signal correlated with that based on GRF with low coefficient (|r| = 0.116 to 0.368, P < 0.05). The stability time and stability index based on the acceleration signals of different positions of human body showed low to high retest reliability (CMC 0.30 to 0.91). For the females, among the stability time based on acceleration signal, eleven indexes achieved average to very high discriminant validity (AUC = 0.702 to 0.942, P < 0.05); eight of the stability indexes reached general level of discriminant validity (AUC = 0.717 to 0.782, P < 0.05). No algorithms achieved good discriminant effect in male subjects. ConclusionBased on the acceleration signal of waist point in single-leg landing stability test, the stability time calculated by UTOP algorithm can evaluate the dynamic postural stability of female FAI patients with high discriminant validity and medium to high retest reliability.
3.Structure-based discovery of orally efficient inhibitors via unique interactions with H-pocket of PDE8 for the treatment of vascular dementia.
Xu-Nian WU ; Qian ZHOU ; Ya-Dan HUANG ; Xi XIE ; Zhe LI ; Yinuo WU ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2022;12(7):3103-3112
Our previous study demonstrated that phosphodiesterase 8 (PDE8) could work as a potential target for vascular dementia (VaD) using a chemical probe 3a. However, compound 3a is a chiral compound which was obtained by chiral resolution on HPLC, restricting its usage in clinic. Herein, a series of non-chiral 9-benzyl-2-chloro-adenine derivatives were discovered as novel PDE8 inhibitors. Lead 15 exhibited potent inhibitory activity against PDE8A (IC50 = 11 nmol/L), high selectivity over other PDEs, and remarkable drug-like properties (worthy to mention is that its bioavailability was up to 100%). Oral administration of 15 significantly improved the cAMP level of the right brain and exhibited dose-dependent effects on cognitive improvement in a VaD mouse model. Notably, the X-ray crystal structure of the PDE8A-15 complex showed that the potent affinity and high selectivity of 15 might come from the distinctive interactions with H-pocket including T-shaped π-π interactions with Phe785 as well as a unique H-bond network, which have never been observed in other PDE-inhibitor complex before, providing new strategies for the further rational design of novel selective inhibitors against PDE8.
4.Structure-based design, synthesis, and biological evaluation of novel pyrimidinone derivatives as PDE9 inhibitors.
Xu-Nian WU ; Ya-Dan HUANG ; Jin-Xuan LI ; Yan-Fa YU ; Zhou QIAN ; Chen ZHANG ; Yinuo WU ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2018;8(4):615-628
The pathological processes of Alzheimer's disease and type 2 diabetes mellitus have been demonstrated to be linked together. Both PDE9 inhibitors and PPAR agonists such as rosiglitazone exhibited remarkable preclinical and clinical treatment effects for these two diseases. In this study, a series of PDE9 inhibitors combining the pharmacophore of rosiglitazone were discovered. All the compounds possessed remarkable affinities towards PDE9 and four of them have the IC values <5 nmol/L. In addition, these four compounds showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Compound , the most effective one, gave the IC of 1.1 nmol/L towards PDE9, which is significantly better than the reference compounds PF-04447943 and BAY 73-6691. The analysis of putative binding patterns and binding free energy of the designed compounds with PDE9 may explain the structure-activity relationships and provide evidence for further structural modifications.
5.Discovery of highly selective and orally available benzimidazole-based phosphodiesterase 10 inhibitors with improved solubility and pharmacokinetic properties for treatment of pulmonary arterial hypertension.
Yuncong YANG ; Sirui ZHANG ; Qian ZHOU ; Chen ZHANG ; Yuqi GAO ; Hao WANG ; Zhe LI ; Deyan WU ; Yinuo WU ; Yi-You HUANG ; Lei GUO ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2020;10(12):2339-2347
Optimization efforts were devoted to discover novel PDE10A inhibitors in order to improve solubility and pharmacokinetics properties for a long-term therapy against pulmonary arterial hypertension (PAH) starting from the previously synthesized inhibitor
6.Discovery of novel phosphodiesterase-1 inhibitors for curing vascular dementia: Suppression of neuroinflammation by blocking NF-κB transcription regulation and activating cAMP/CREB axis.
Qian ZHOU ; Meiling LE ; Yiyi YANG ; Wenjuan WANG ; Yuqi HUANG ; Quan WANG ; Yijing TIAN ; Meiyan JIANG ; Yong RAO ; Hai-Bin LUO ; Yinuo WU
Acta Pharmaceutica Sinica B 2023;13(3):1180-1191
Vascular dementia (VaD) is the second commonest type of dementia which lacks of efficient treatments currently. Neuroinflammation as a prominent pathological feature of VaD, is highly involved in the development of VaD. In order to verify the therapeutic potential of PDE1 inhibitors against VaD, the anti-neuroinflammation, memory and cognitive improvement were evaluated in vitro and in vivo by a potent and selective PDE1 inhibitor 4a. Also, the mechanism of 4a in ameliorating neuroinflammation and VaD was systematically explored. Furthermore, to optimize the drug-like properties of 4a, especially for metabolic stability, 15 derivatives were designed and synthesized. As a result, candidate 5f, with a potent IC50 value of 4.5 nmol/L against PDE1C, high selectivity over PDEs, and remarkable metabolic stability, efficiently ameliorated neuron degeneration, cognition and memory impairment in VaD mice model by suppressing NF-κB transcription regulation and activating cAMP/CREB axis. These results further identified PDE1 inhibition could serve as a new therapeutic strategy for treatment of VaD.
7.Rac1 promotes the formation of heterotypic cell-in-cell structure.
Tao HU ; Pengfei FENG ; Haoyuan LI ; Lulin ZHOU ; Zubiao NIU ; Yinuo HUANG ; Xiaoning WANG ; Chenxi WANG ; Hui LIU ; Chengjun WU
Chinese Journal of Biotechnology 2023;39(10):4123-4134
Heterotypic cell-in-cell structures (heCICs) are closely related to tumor development and progression, and have become a new frontier in life science research. Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the classic Rho GTPase, which plays a key role in regulating the cytoskeleton and cell movement. To investigate the role and mechanism of Rac1 in the formation of heCICs, tumor cells and immune killer cells were labeled with cell-tracker, respectively, to establish the heCICs model. Upon treatment with the Rac1 inhibitor NSC23766, the formation of heCICs between tumor and immune cells was significantly reduced. The plasmid pQCXIP-Rac1-EGFP constructed by gene cloning was packaged into pseudoviruses that subsequently infect tumor cells to make cell lines stably expressing Rac1. As a result, the formation of heCICs was significantly increased upon Rac1 overexpression. These results demonstrated a promotive role of Rac1 in heCICs formation, which may facilitate treating cell-in-cell related diseases, such as tumors, by targeting Rac1.