1.Effect of Wenyang Huazhuo Formula (温阳化浊方) on Reproductive Aging,Ovarian Mechanical Micro-environment,and Offspring Reproductive Potential in Aged Model Mice
Jiaqi XU ; Xiaoli ZHAO ; Nan JIANG ; Kaixi LI ; Yafei DING ; Zimu WEN ; Yingying JIA ; Mengjun JIANG ; Tian XIA
Journal of Traditional Chinese Medicine 2025;66(6):612-620
ObjectiveTo explore the possible mechanisms of Wenyang Huazhuo Formula (温阳化浊方, WHF) in improving reproductive aging from the perspective of the ovarian mechanical microenvironment. MethodsThe experiment included five groups, 3-month group (20 female mice at 3 months of age), 6-month group (20 female mice at 6 months of age), 6-month + WHF group (20 female mice at 5 months of age treated with WHF), 9-month group (20 female mice at 9 months of age), and 9-month + WHF group (20 female mice at 8 months of age treated with WHF). The 6-month + WHF group and 9-month + WHF group were orally administered WHF 41.2 g/(kg·d) once daily for 4 consecutive weeks. The other three groups received no intervention. Reproductive hormone levels were measured by ELISA. HE staining was used to count the numbers of various stages of follicles. Ovarian hyaluronic acid (HA) content and collagen fiber content were measured to evaluate the ovarian mechanical microenvironment. Superovulation was performed to observe the number of eggs obtained, as well as the number of offspring and birth weight to assess fertility. The in vitro fertilization and blastocyst culture of oocytes from female offspring in each group were observed to evaluate the effect of WHF on offspring reproductive potential. ResultsCompared with the 3-month group, the 6-month group and 9-month group showed significantly decreased serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), decreased ovarian collagen content, and reduced numbers of primordial and secondary follicles. In contrast, the numbers of primary follicles, antral follicles, and atretic follicles increased. The levels of anti-Müllerian hormone (AMH), ovarian HA content, and the fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring were significantly lower (P<0.05). Compared with the 6-month group, the 6-month + WHF group showed significantly reduced serum levels of GnRH, FSH, and LH, with a significant decrease in primary follicles, antral follicles, and atretic follicles as well as increase of AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, and offspring birth weight (P<0.05). Compared with the 9-month group, the 9-month + WHF group exhibited reduced GnRH, FSH, and collagen fiber content, as well as reduced number of primary follicles, antral follicles, and atretic follicles. However, AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, offspring numbers, birth weight, fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring all significantly increased (P<0.05). ConclusionWHF can significantly improve the ovarian reserve, fertility, and reproductive potential in offspring during reproductive mid-life and late-life stages. Its effect may be related to the remodeling of the mechanical microenvironment of aging ovaries. Moreover, the effect on the mechanical microenvironment remodeling of late-stage ovaries and the improvement of the offspring reproductive potential is more significant.
2.Dynamic Sequential Diagnosis and Treatment of Pediatric Nephrotic Syndrome Based on the "Sweat Pore-Qi and Liquid-Kidney Collaterals"
Zhenhua YUAN ; Mingyang CAI ; Yingying JIANG ; Jingjing WU ; Wenqing PAN ; Zichao DING ; Shuzi ZHANG ; Xianqing REN
Journal of Traditional Chinese Medicine 2025;66(10):1007-1010
Based on the viewpoint of "sweat pore-qi and liquid-kidney collaterals", it is believed that children's nephrotic syndrome is caused by the core mechanism of sweat pore constraint and closure, qi and liquid imbalance, and kidney collaterals impairment, and it is proposed that the treatment principle is to nourish the sweat pore, regulate qi and fluid, and supplement the kidney and unblock the collaterals. In clinic, guided by sequential therapy and according to the different disease mechanism characteristics of the four stages, including early stage of the disease, hormone induction stage, hormone reduction stage, hormone maintenance stage, the staged dynamic identification and treatment was applied. For early stage of the disease with edema due to yang deficiency, modified Zhenwu Decoction (真武汤) was applied to warm yang and drain water; for hormone induction stage with yin deficiency resulting in effulgent fire, modified Zhibai Dihuang Pill (知柏地黄丸) plus Erzhi Pill (二至丸) was used to enrich yin and reduce fire; for hormone reduction stage with qi and yin deficiency, modified Shenqi Dihuang Decoction (参芪地黄汤) was used to boost qi and nourish yin; for hormone maintenance stage, modified Shenqi Pill (肾气丸) was used to supplement yin and yang. Meanwhile, the treatment also attaches importance to the combination of vine-based or worm medicinals to dredge collaterals, so as to providing ideas for clinical treatment.
3.Efficacy of direct-acting antiviral agents combined regimens for hepatitis C virus with different genotypes in Dehong Prefecture, Yunnan Province from 2022 to 2024
Renhai TANG ; Yidan ZHAO ; Yuecheng YANG ; Runhua YE ; Lifen XIANG ; Xingmei FENG ; Qunbo ZHOU ; Yanfen CAO ; Na HE ; Yingying DING ; Song DUAN
Shanghai Journal of Preventive Medicine 2025;37(8):676-681
ObjectiveTo investigate the therapeutic effects of direct-acting antiviral agents (DAAs) combined regimens for hepatitis C virus (HCV) patients in Dehong Prefecture, Yunnan Province from 2022 to 2024, to analyze the characteristics of treatment failure patients, so as to provide a basis for discovering more effective treatment regimens in the future. MethodsData on HCV prevention and treatment in Dehong Prefecture was extracted from the China Disease Control and Prevention Information System. A total of 617 patients with HCV antiviral therapy were included, and the differences in variable characteristics among patients with different genotypes were analyzed using comparative statistical tests, including basic socio-demographic characteristics, biochemical testing indicators, and information on previous treatment and current treatment. In addition, the cure rate of HCV patients with diverse characteristics was compared, and the potential causes of treatment failure were explored simultaneously. ResultsThe cure rate of HCV was 96.8%, and statistically significant differences were observed in aspartate transaminase (AST) and alanine transaminase (ALT) levels, previous antiviral therapy history and initial treatment regimens among patients with different HCV genotypes (all P<0.05). Among the multi-type combination regimens, the cure rate of sofosbuvir (SOF)-containing regimens was 97.00%, that of velpatasvir (VEL)-containing regimens was 95.45%, and the cure rate of other treatment regimens, including the regimens with ribavirin (RIB) intervention, was 93.10%. Among the patients with treatment failure, 45.00% had genotype 3, 40.00% had abnormal abdominal ultrasound results, and all presented with elevated baseline AST test levels. ConclusionThe clinical treatment of HCV patients should consider the differences in genotype and biochemical test results. DAAs combined regimens for HCV have achieved a high cure rate in Dehong Prefecture and are applicable to HCV patients with diverse clinical characteristics, providing research evidence for wider application.
4.Traditional Chinese Medicine Treats Colorectal Cancer by Regulating PI3K/Akt/mTOR Signaling Pathway: A Review
Yingying SUN ; Pan ZHENG ; Jin DING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):271-281
Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract, with a high incidence and high mortality. The majority of patients are diagnosed at the middle or advanced stage, which severely influences and threatens their physical health. Current treatment modalities such as surgery, radiotherapy, and chemotherapy often encounter challenges including metastasis, recurrence, and drug resistance. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway serves as a classical regulator that regulates physiological processes such as cell cycle, autophagy, apoptosis, and proliferation. Overexpression of this pathway is observed in various tumors. In the context of CRC, the activation of this pathway can facilitate the proliferation, invasion, and migration, inhibit the autophagy and apoptosis, promote the epithelial-mesenchymal transition of CRC cells, enhance angiogenesis within the tumor, and contribute to chemotherapy resistance and radiation resistance in CRC. Traditional Chinese medicine (TCM) treatment can exert an anti-CRC effect by inhibiting this pathway, thereby improving clinical efficacy and safety. This article retrieves relevant research literature published domestically and internationally regarding the regulation of the PI3K/Akt/mTOR signaling pathway by TCM in the treatment of CRC and conducts detailed classification and summary. The active components of TCM include glycosides, flavonoids, alkaloids, terpenoids, polyphenols, and naphthoquinones. The volatile oils and extracts of TCM include Angelicae Sinensis Radix volatile oil, Astragali Radix polysaccharides, Caryophylli Flos extract, Forsythiae Fructus extract, Curcumae Longae Rhizoma extract, and Celastrus orbiculatus extract. The compound formulas of TCM include Banxia Xiexin decoction, Jianpi Qingre Huoxue formula, and Chanling Plaster. Through summary and analysis, it is discovered that the abovementioned TCM can produce effects such as blocking the cell cycle, inducing autophagy and apoptosis, inhibiting angiogenesis, suppressing proliferation and migration, and reversing chemotherapy resistance and radiotherapy resistance by inhibiting the PI3K/Akt/mTOR pathway in CRC cells. TCM holds promise in the research and application of targeting the PI3K/Akt/mTOR signaling pathway for CRC treatment. The summary and conclusion of this article aim to provide references for subsequent research and the development of new drugs.
5.Traditional Chinese Medicine Treats Colorectal Cancer by Regulating PI3K/Akt/mTOR Signaling Pathway: A Review
Yingying SUN ; Pan ZHENG ; Jin DING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):271-281
Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract, with a high incidence and high mortality. The majority of patients are diagnosed at the middle or advanced stage, which severely influences and threatens their physical health. Current treatment modalities such as surgery, radiotherapy, and chemotherapy often encounter challenges including metastasis, recurrence, and drug resistance. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway serves as a classical regulator that regulates physiological processes such as cell cycle, autophagy, apoptosis, and proliferation. Overexpression of this pathway is observed in various tumors. In the context of CRC, the activation of this pathway can facilitate the proliferation, invasion, and migration, inhibit the autophagy and apoptosis, promote the epithelial-mesenchymal transition of CRC cells, enhance angiogenesis within the tumor, and contribute to chemotherapy resistance and radiation resistance in CRC. Traditional Chinese medicine (TCM) treatment can exert an anti-CRC effect by inhibiting this pathway, thereby improving clinical efficacy and safety. This article retrieves relevant research literature published domestically and internationally regarding the regulation of the PI3K/Akt/mTOR signaling pathway by TCM in the treatment of CRC and conducts detailed classification and summary. The active components of TCM include glycosides, flavonoids, alkaloids, terpenoids, polyphenols, and naphthoquinones. The volatile oils and extracts of TCM include Angelicae Sinensis Radix volatile oil, Astragali Radix polysaccharides, Caryophylli Flos extract, Forsythiae Fructus extract, Curcumae Longae Rhizoma extract, and Celastrus orbiculatus extract. The compound formulas of TCM include Banxia Xiexin decoction, Jianpi Qingre Huoxue formula, and Chanling Plaster. Through summary and analysis, it is discovered that the abovementioned TCM can produce effects such as blocking the cell cycle, inducing autophagy and apoptosis, inhibiting angiogenesis, suppressing proliferation and migration, and reversing chemotherapy resistance and radiotherapy resistance by inhibiting the PI3K/Akt/mTOR pathway in CRC cells. TCM holds promise in the research and application of targeting the PI3K/Akt/mTOR signaling pathway for CRC treatment. The summary and conclusion of this article aim to provide references for subsequent research and the development of new drugs.
6.Preparation and identification of monoclonal antibodies against cat allergen Fel d 1.
Linying CAI ; Zichen ZHANG ; Zhuangli BI ; Shiqiang ZHU ; Miao ZHANG ; Yiming FAN ; Jingjie TANG ; Aoxing TANG ; Huiwen LIU ; Yingying DING ; Chen LI ; Yingqi ZHU ; Guijun WANG ; Guangqing LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):348-354
Objective Currently, there is no commercially available quantitative detection kit for the main Felis domestic allergen (Fel d 1) in China. To establish a rapid detection method for Fel d 1, this study aims to prepare monoclonal antibodies against Fel d 1 protein. Methods The codon preference of Escherichia coli was utilized to optimize and synthesize the Fel d 1 gene. The prokaryotic expression plasmid pET-28a-Fel d 1 was constructed and used to express and purify the recombinant Fel d 1 protein. Subsequently, the recombinant protein was immunized into BALB/c mice and monoclonal antibodies (mAbs) were prepared by the hybridoma technique. An indirect ELISA was established using the recombinant Fel d 1 as the coating antigen, and hybridoma cell lines were screened for positive clones. The specificity and antigenic epitopes of the mAbs were confirmed by Western blot analysis. Finally, the selected hybridoma cells were injected into the peritoneal cavities of BALB/c mice for large-scale monoclonal antibody production. Results The recombinant plasmid pET-28a-Fel d 1 was successfully constructed, and soluble Fel d 1 protein was obtained after optimizing the expression conditions. Western blot and antibody titer assays confirmed the successful isolation of two hybridoma cell lines, 7D11 and 5H4, which stably secreted mAbs specific to Fel d 1. Antibody characterization revealed that the 5H4 mAb was of the IgG2a subtype and could recognize the amino acid region 105-163 of Fel d 1, while the 7D11 mAb was the IgG1 subtype and could recognize the amino acid region 1-59. Conclusion The high-purity recombinant Fel d 1 protein produced in this study provides a promising alternative for clinical immunotherapy of cat allergies. Furthermore, the monoclonal antibody prepared in this experiment lays a material foundation for the in-depth study of the biological function of Fel d 1 and the development of ELISA detection.
Animals
;
Antibodies, Monoclonal/biosynthesis*
;
Mice, Inbred BALB C
;
Cats
;
Mice
;
Allergens/genetics*
;
Glycoproteins/genetics*
;
Enzyme-Linked Immunosorbent Assay
;
Hybridomas/immunology*
;
Recombinant Proteins/genetics*
;
Female
;
Antibody Specificity
7.A chromosome-level Dendrobium moniliforme genome assembly reveals the regulatory mechanisms of flavonoid and carotenoid biosynthesis pathways.
Jiapeng YANG ; Qiqian XUE ; Chao LI ; Yingying JIN ; Qingyun XUE ; Wei LIU ; Zhitao NIU ; Xiaoyu DING
Acta Pharmaceutica Sinica B 2025;15(4):2253-2272
Dendrobium moniliforme (D. moniliforme) is a traditional medicinal herb widely cultivated in Asia. Flavonoids, one of the largest groups of secondary metabolites in plants, are significant medicinal components in Dendrobium species. Several subgroups of R2R3-MYB proteins have been validated to directly regulate flavonoid biosynthesis. Using PacBio sequencing technology, we assembled a high-quality chromosome-level D. moniliforme genome with a total length of 1.20 Gb and a contig N50 of 3.97 Mb. The BUSCO assessment of genome annotation was 91.4%. By integrating the genome and transcriptome, we identified biosynthesis pathway enzyme genes related to flavonoids, polysaccharides, carotenoids, and alkaloids. A total of 90 R2R3-MYBs were identified in D. moniliforme and classified into 21 subgroups. Studies on the functions of R2R3-MYB transcription factors revealed that R2R3-MYB in SG6 can up-regulate flavonoid biosynthesis. Various validation experiments, including subcellular localization, transient overexpression, UPLC-MS/MS, HPLC, yeast one-hybrid, and dual-luciferase assays, demonstrated that DMYB69 directly up-regulates the expression of enzyme genes involved in flavonoid biosynthesis, increasing the content of flavonoids such as anthocyanin, flavone, and flavonol. Additionally, DMYB44 was shown to directly up-regulate the expression of carotenoid biosynthesis enzyme genes, thereby increasing carotenoid content. This study provides an essential genome resource and theoretical basis for molecular breeding research in D. moniliforme.
9.Protective mechanism of modulating cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon gene pathway in oleic acid-induced acute lung injury in mice.
Liangyu MI ; Wenyan DING ; Yingying YANG ; Qianlin WANG ; Xiangyu CHEN ; Ziqi TAN ; Xiaoyu ZHANG ; Min ZHENG ; Longxiang SU ; Yun LONG
Chinese Critical Care Medicine 2025;37(7):651-656
OBJECTIVE:
To investigate the role and mechanism of the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon gene (cGAS/STING) pathway in oleic acid-induced acute lung injury (ALI) in mice.
METHODS:
Male wild-type C57BL/6J mice were randomly divided into five groups (each n = 10): normal control group, ALI model group, and 5, 50, 500 μg/kg inhibitor pretreatment groups. The ALI model was established by tail vein injection of oleic acid (7 mL/kg), while the normal control group received no intervention. The inhibitor pretreatment groups were intraperitoneally injected with the corresponding doses of cGAS inhibitor RU.521 respectively 1 hour before modeling. At 24 hours post-modeling, blood was collected, and mice were sacrificed. Lung tissue pathological changes were observed under light microscopy after hematoxylin-eosin (HE) staining, and pathological scores were assessed. Western blotting was used to detect the protein expressions of cGAS, STING, phosphorylated TANK-binding kinase 1 (p-TBK1), phosphorylated interferon regulatory factor 3 (p-IRF3), and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) in lung tissue. Immunohistochemistry was performed to observe STING and p-NF-κB positive expressions in lung tissue. Serum interferon-β (IFN-β) levels were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
Compared with the normal control group, the ALI model group exhibited significant focal alveolar thickening, intra-alveolar hemorrhage, pulmonary capillary congestion, and neutrophil infiltration in the pulmonary interstitium and alveoli, along with markedly increased pathological scores (10.33±0.58 vs. 1.33±0.58, P < 0.05). Protein expressions of cGAS, STING, p-TBK1, p-IRF3, and p-NF-κB p65 in lung tissue significantly increased [cGAS protein (cGAS/β-actin): 1.24±0.02 vs. 0.56±0.02, STING protein (STING/β-actin): 1.27±0.01 vs. 0.55±0.01, p-TBK1 protin (p-TBK1/β-actin): 1.34±0.03 vs. 0.22±0.01, p-IRF3 protein (p-IRF3/β-actin): 1.23±0.02 vs. 0.36±0.01, p-NF-κB p65 protein (p-NF-κB p65/β-actin): 1.30±0.02 vs. 0.53±0.02, all P < 0.05], positive expressions of STING and p-NF-κB in lung tissue were significantly elevated [STING (A value): 0.51±0.03 vs. 0.30±0.07, p-NF-κB (A value): 0.57±0.05 vs. 0.31±0.03, both P < 0.05], and serum IFN-β levels were also significantly higher (ng/L: 256.02±3.84 vs. 64.15±1.17, P < 0.05). The cGAS inhibitor pretreatment groups showed restored alveolar structural integrity, reduced inflammatory cell infiltration, and decreased hemorrhage area, along with dose-dependent lower pathological scores as well as the protein expressions of cGAS, STING, p-TBK1, p-IRF3 and p-NF-κB p65 in lung tissue, with significant differences between the 500 μg/kg inhibitor group and ALI model group [pathological score: 2.67±0.58 vs. 10.33±0.58, cGAS protein (cGAS/β-actin): 0.56±0.03 vs. 1.24±0.02, STING protein (STING/β-actin): 0.67±0.03 vs. 1.27±0.01, p-TBK1 protein (p-TBK1/β-actin): 0.28±0.01 vs. 1.34±0.03, p-IRF3 protein (p-IRF3/β-actin): 0.32±0.01 vs. 1.23±0.02, p-NF-κB p65 protein (p-NF-κB p65/β-actin): 0.63±0.01 vs. 1.30±0.02, all P < 0.05]. Compared with the ALI model group, positive expressions of STING and p-NF-κB in lung tissue were significantly reduced in the 500 μg/kg inhibitor group [STING (A value): 0.40±0.01 vs. 0.51±0.03, p-NF-κB (A value): 0.43±0.02 vs. 0.57±0.05, both P < 0.05], and serum IFN-β levels were also markedly reduced (ng/L: 150.03±6.19 vs. 256.02±3.84, P < 0.05).
CONCLUSIONS
The cGAS/STING pathway is activated in oleic acid-induced ALI, leading to exacerbated inflammatory responses and increased lung damage. RU.521 can inhibit cGAS, thereby down-regulating the expression of pathway proteins and cytokines, and providing protection to lung tissue.
Animals
;
Acute Lung Injury/chemically induced*
;
Male
;
Nucleotidyltransferases/metabolism*
;
Mice
;
Signal Transduction
;
Mice, Inbred C57BL
;
Membrane Proteins/metabolism*
;
Oleic Acid/adverse effects*
;
Transcription Factor RelA/metabolism*
;
Lung/pathology*
;
Interferon Regulatory Factor-3/metabolism*
;
Disease Models, Animal
10.Progress in clinicopathological diagnosis of oral potentially malignant disorders.
Yingying CUI ; Chuanyang DING ; Chaoran PENG ; Jianyun ZHANG ; Xinjia CAI ; Tiejun LI
West China Journal of Stomatology 2025;43(3):314-324
As the field of oral pathology has evolved, the nomenclature and classification of oral mucosal diseases with a remarkable risk of malignant transformation have undergone several modifications. In 2005, the World Health Organization (WHO) introduced the concept of oral potentially malignant disorders (OPMDs) as an alternative to the terms for oral precancerous lesions and precancerous conditions. In the consensus report by the WHO Collaborating Center for Oral Cancer of 2021, OPMD is defined as "any oral mucosal abnormality that is associated with a statistically increased risk of developing oral cancer."This definition encompasses a range of conditions, in-cluding oral leukoplakia, oral submucous fibrosis, proliferative verrucous leukoplakia, oral lichen planus, and other lesions. In light of the complex etiology, unclear pathogenesis, and carcinogenesis of OPMDs, early and precise diagnosis and treatment can contribute to the secondary prevention of oral cancer. For this reason, this review, which aims to provide a basis for the precise clinical diagnosis of OPMDs, was performed. Its aim was achieved by reviewing the historical evolution and research progress of the nomenclature, classification, and histopathological diagnostic criteria of OPMDs.
Humans
;
Mouth Neoplasms/diagnosis*
;
Precancerous Conditions/diagnosis*
;
Leukoplakia, Oral/diagnosis*
;
Lichen Planus, Oral/pathology*
;
Oral Submucous Fibrosis/pathology*
;
Mouth Mucosa/pathology*
;
World Health Organization

Result Analysis
Print
Save
E-mail