1.Construction of conjugated polymer-exoelectrogen hybrid bioelectrodes and applications in microbial fuel cells.
Qian DING ; Yingxiu CAO ; Feng LI ; Tong LIN ; Yuanyuan CHEN ; Zheng CHEN ; Hao SONG
Chinese Journal of Biotechnology 2021;37(1):1-14
Microbial fuel cell (MFC) is a bioelectrochemical device, that enables simultaneous wastewater treatment and energy generation. However, a few issues such as low output power, high ohmic internal resistance, and long start-up time greatly limit MFCs' applications. MFC anode is the carrier of microbial attachment, and plays a key role in the generation and transmission of electrons. High-quality bioelectrodes have developed into an effective way to improve MFC performance. Conjugated polymers have advantages of low cost, high conductivity, chemical stability and good biocompatibility. The use of conjugated polymers to modify bioelectrodes can achieve a large specific surface area and shorten the charge transfer path, thereby achieving efficient biological electrochemical performance. In addition, bacteria can be coated with nano-scale conjugated polymer and effectively transfer the electrons generated by cells to electrodes. This article reviews the recently reported applications of conjugated polymers in microbial fuel cells, focusing on the MFC anode materials modified by conjugated polymers. This review also systematically analyzes the advantages and limitations of conjugated polymers, and how these composite hybrid bioelectrodes solve practical issues such as low energy output, high inner resistance, and long starting time.
Bacteria
;
Bioelectric Energy Sources
;
Electricity
;
Electrodes
;
Polymers
;
Water Purification