1.The value of multimodal MRI radiomics in predicting muscle-invasive bladder cancer
Yingsi YANG ; Xi LONG ; Xiaohong CHEN ; Rihui YANG ; Yuhui ZHANG ; Weixiong FAN ; Tianhui ZHANG
Journal of Practical Radiology 2024;40(2):249-252,274
Objective To investigate the value of multimodal MRI radiomics in predicting muscle-invasive bladder cancer.Methods A total of 178 patients with pathology diagnosis of bladder cancer were retrospectively collected,including 31 cases of muscle invasive bladder cancer(MIBC)and 147 cases of non-muscle invasive bladder cancer(NMIBC).Patients were randomly divided into training group and testing group at a ratio of 7︰3.The range of bladder tumors in T2WI,diffusion weighted imaging(DWI)and apparent diffusion coefficient(ADC)images were segmented as volume of interest(VOI)by using ITK-SNAP software.Radiomics features were extracted through A.K software.The optimal radiomics features were obtained through radiomics algorithm and least absolute shrinkage and selection operator(LASSO)method.Finally,the logistic regression analysis method and random forest model method were used to construct prediction models.The performance of prediction models was evaluated by the receiver operating characteristic(ROC)curve.Results This study constructed four groups of models containing T2WI prediction model,DWI prediction model,ADC prediction model,and T2WI+DWI+ADC prediction model.The area under the curve(AUC)of T2WI,DWI,and ADC prediction models for identifying MIBC and NMIBC were separately 0.920,0.914,and 0.954 in the training group while those were respectively 0.881,0.773,and 0.871 in the testing group.There was no statistical significance between T2WI,DWI,and ADC prediction models.In training and testing groups,the AUC of T2WI+DWI+ADC prediction model were respectively 0.959 and 0.909,which were higher than the single sequence prediction model.The sensitivity and specificity of the training group were 0.905 and 0.853 and the sensitivity and specificity of the testing group were 0.778 and 0.795.Conclusion MRI radiomics prediction model can effectively differentiate MIBC and NMIBC.The T2WI+DWI+ADC prediction model shows better prediction efficiency.
3.An engineered xCas12i with high activity, high specificity, and broad PAM range.
Hainan ZHANG ; Xiangfeng KONG ; Mingxing XUE ; Jing HU ; Zikang WANG ; Yinghui WEI ; Haoqiang WANG ; Jingxing ZHOU ; Weihong ZHANG ; Mengqiu XU ; Xiaowen SHEN ; Fengcai YIN ; Zhiyuan AI ; Guangyan HUANG ; Junhui XIA ; Xueqiong SONG ; Hengbin LI ; Yuan YUAN ; Jinhui LI ; Na ZHONG ; Meiling ZHANG ; Yingsi ZHOU ; Hui YANG
Protein & Cell 2023;14(7):538-543
4.Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver.
Bingbing HE ; Wenbo PENG ; Jia HUANG ; Hang ZHANG ; Yingsi ZHOU ; Xiali YANG ; Jing LIU ; Zhijie LI ; Chunlong XU ; Mingxing XUE ; Hui YANG ; Pengyu HUANG
Protein & Cell 2020;11(7):518-524
6.Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor.
Yinghui WEI ; Meiling ZHANG ; Jing HU ; Yingsi ZHOU ; Mingxing XUE ; Jianhang YIN ; Yuanhua LIU ; Hu FENG ; Ling ZHOU ; Zhifang LI ; Dongshuang WANG ; Zhiguo ZHANG ; Yin ZHOU ; Hongbin LIU ; Ning YAO ; Erwei ZUO ; Jiazhi HU ; Yanzhi DU ; Wen LI ; Chunlong XU ; Hui YANG
Protein & Cell 2023;14(6):416-432
Approximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ε4 allele copies were converted to the AD-neutral ε3 allele in human ε4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.
Humans
;
Apolipoprotein E4/genetics*
;
Cytosine
;
Mutation
;
Blastocyst
;
Heterozygote
;
Gene Editing
;
CRISPR-Cas Systems