1.Progress of cellular growth factors in neurorehabilitation and neuroplasticity
Xiaokun LI ; Xu LIU ; Jiahua LIU ; Zhiheng RAO ; Yingde LUO ; Keyang CHEN ; Tong ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2022;28(2):175-182
With potent biological activities, cellular growth factors are polypeptide factors that primarily stimulate cell growth and proliferation. They participate in the regulation of not only normal physiological functions such as human embryonic development and cell growth, but also neurorehabilitation and neuroplasticity in pathological processes such as nerve injury and recovery. Specifically, cellular growth factors have been shown to promote neuron survival, facilitate nerve regeneration and regulate synaptic plasticity, promote cell differentiation/vascular regeneration and modulate the microenvironment, promote nerve fiber myelination and improve nerve conduction. This review summarized current knowledge on the roles and various growth factors in neurorehabilitation and neuroplasticity, providing an update on potential clinical application of cellular growth factors in the field of neural rehabilitation.
2.Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants.
Yifan WANG ; Yingde XU ; Xuefeng ZHANG ; Jingyu LIU ; Jintong HAN ; Shengli ZHU ; Yanqin LIANG ; Shuilin WU ; Zhenduo CUI ; Weijia LÜ ; Zhaoyang LI
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):937-944
OBJECTIVE:
To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery.
METHODS:
GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized.
RESULTS:
The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect.
CONCLUSION
GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.
Chitosan
;
Silver Nitrate
;
Titanium
;
Anti-Bacterial Agents/pharmacology*
;
Coloring Agents