1.Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ ; Jing ; XU Xinying ; QIAO Yingyi ; SHI Xinglong ; YUE Fang ; LIU Ying ; CHENG Chuanlong ; ZHANG Yuqi ; SUN Jimin ; LI Xiujun
Journal of Preventive Medicine 2026;38(1):10-14
Objective:
To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control.
Methods:
Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence.
Results:
A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk.
Conclusions
SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
2.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
3.Exploring Biological Characteristics of Rat Model of Atrial Fibrillation with Phlegm-heat and Blood Stasis Pattern Based on Metabolomics
Ailin HOU ; Yuxuan LIU ; Wenxi YU ; Xing JI ; Chan WU ; Dazhuo SHI ; Ying ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):245-255
ObjectiveTo establish an animal model of atrial fibrillation(AF) that accurately reflects the phlegm-heat and blood stasis(TRYZ) pathogenesis in traditional Chinese medicine. MethodsForty SPF-grade SD rats were randomly assigned using a random number table to the following groups:the control group, the TRYZ+AF group,the AF group and the TRYZ group, with ten rats in each group. The TRYZ+AF and TRYZ groups underwent a high-fat diet combined with intraperitoneal lipopolysaccharide(LPS) injection to simulate the pathological alterations of TRYZ syndrome. Groups TRYZ+AF and AF were induced with acetylcholine-calcium chloride(Ach-CaCl2) via caudal vein injection to induce AF. The control group received no intervention and was maintained under normal conditions. The modeling period lasted 3 weeks. Electrocardiography was used to assess AF episodes and duration, echocardiography evaluated left atrial dimensions and cardiac function, fully automated biochemical analyzer measured the levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C) and low-density lipoprotein cholesterol(LDL-C), hemoreometer analyzed the whole blood viscosity, plasma viscosity, and whole blood reduced viscosity, a coagulation analyzer assessed prothrombin time(PT), activated partial thromboplastin time(APTT), thrombin time(TT), and fibrinogen(FIB), enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of C-reactive protein(CRP), interleukin(IL)-1β, IL-6, IL-17, tumour necrosis factor(TNF)-α, matrix metalloproteinase-9(MMP-9), galectin-3(Gal-3), Collagen Ⅰ, and α-smooth muscle actin(α-SMA). Hematoxylin-eosin(HE) staining and Masson's trichrome staining were used to analyze pathological changes in atrial myocardium, Western blot was employed to detect MMP-9, Collagen Ⅰ and α-SMA protein expression in myocardial tissue, real-time quantitative polymerase chain reaction(Real-time PCR) evaluated fibrous factor gene expression levels. Changes in the TRYZ syndrome were assessed via body weight, tongue color[red(R), green(G), and blue(B)], and rectal temperature. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to detect differential metabolites between the control group and the TRYZ+AF group. ResultsFollowing three weeks of sustained modeling, compared with the control group, rats in the TRYZ+AF and the TRYZ groups exhibited reduced body weight, dry faeces, elevated rectal temperature, dark red tongue, decreased RGB values on the tongue surface, and markedly elevated TC and LDL-C levels(P<0.05, P<0.01). The TRYZ+AF, TRYZ, and AF groups exhibited significantly decreased TT, APTT and PT, along with markedly elevated whole blood viscosity and FIB(P<0.05, P<0.01). Rats in the TRYZ+AF and AF groups exhibited AF rhythm, markedly decreased heart rate, prolonged RR intervals, enlarged left atrium, and significantly reduced ejection fraction and shortening fraction(P<0.05, P<0.01). Serum levels of CRP, IL-1β, IL-6, IL-17, TNF-α, MMP-9, Gal-3, Collagen Ⅰ, and α-SMA were elevated in rats from the TRYZ+AF, TRYZ, and AF groups compared to the control group, with the most pronounced increase observed in the TRYZ+AF group(P<0.05, P<0.01). Histopathology revealed that the collagen fiber deposition in the atrial of rats in the TRYZ+AF, TRYZ and AF groups was higher than that in the control group(P<0.05, P<0.01). Western blot and Real-time PCR results further demonstrated that the protein and mRNA expression levels of MMP-9, Collagen Ⅰ and α-SMA in the myocardial tissue of the TRYZ+AF group were higher than those in the other three groups(P<0.05, P<0.01). Metabolomic analysis revealed 173 differentially expressed metabolites in the TRYZ+AF group and the control group, primarily enriched in pathways such as glycerophospholipid metabolism and glycolysis/gluconeogenesis. ConclusionThis study successfully establishes a rat model of AF integrated with the TRYZ syndrome, demonstrating the pathological process where the interactions of phlegm, heat and stasis jointly trigger tremor, this provides a reliable experimental tool for in-depth research into the biological basis of this disease syndrome.
4.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
5.Empirical study of input, output, outcome and impact of community-based rehabilitation stations
Xiayao CHEN ; Ying DONG ; Xue DONG ; Zhongxiang MI ; Jun CHENG ; Aimin ZHANG ; Didi LU ; Jun WANG ; Jude LIU ; Qianmo AN ; Hui GUO ; Xiaochen LIU ; Zefeng YU
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):83-89
ObjectiveTo investigate the present situation of input, output, outcome and impact of all registered community-based rehabilitation stations in Inner Mongolia in China, and analyze how the input predict the output, outcome and impact. MethodsFrom March 1st to April 30th, 2025, a questionnaire survey was conducted on all registered community-based rehabilitation stations in Inner Mongolia, covering four dimensions: input, output, outcome and impact. A total of 1 365 questionnaires were distributed. The input included four items: laws and policies, human resources, equipment and facilities, and rehabilitation information management. The output included two items: technical paths and benefits/effectiveness. The outcome included three items: coverage rates, rehabilitation interventions and functional results. The impact included two items: health and sustainability. Each item contained several questions, all of which were described in a positive way. Each question was scored from one to five. A lower score indicated that the situation of the community-based rehabilitation station was more in line with the content described in the question. Regression analysis was performed using the total score of each item of input dimension as independent variables, and the total scores of the output, outcome and impact dimensions as dependent variables. ResultsA total of 1 262 valid questionnaires were collected. The mean values of input, output, outcome and impact of community-based rehabilitation stations were 1.827 to 1.904, with coefficient of variation of 45.892% to 49.239%. The regression analysis showed that, rehabilitation information management, human resources, and laws and policies significantly predicted the output dimension (R² = 0.910, P < 0.001). Meanwhile, all four items in the input dimension predicted both the outcome (R² = 0.850, P < 0.001) and impact dimensions (R² = 0.833, P < 0.001). ConclusionInput, output, outcome and impact of the community-based rehabilitation stations in Inner Mongolia were generally in line with the content of the questions, although some imbalances were observed. Additionally, the input of community-based rehabilitation stations could significantly predict their output, outcome and impact.
6.Current status of research on the mechanism of action of emodin in the prevention and treatment of chronic liver diseases
Yajie CHEN ; Xin WANG ; Yunjuan WU ; Ying SU ; Yuhan WANG ; Jinxue ZHANG ; Ning YAO ; Ying QIN ; Xiaoning ZUO
Journal of Clinical Hepatology 2026;42(1):228-234
Chronic liver diseases are a group of diseases in which the liver is subjected to a variety of injuries over a long period of time, resulting in irreversible pathological changes that last longer than 6 months. Emodin (EMO) is a natural anthraquinone derivative derived from Rheum officinale, and its pharmacological effect has been extensively studied, exhibiting a variety of biological properties and involving multiple signaling molecules and pathways. Western medicine or surgical treatment is currently the main treatment regimen for chronic liver diseases, and the advance in treatment is limited by various reasons such as side effects and high costs. Due to its natural origin and efficacy, EMO has unique advantages in the treatment of chronic liver diseases and has now become a research hotspot. This article summarizes the therapeutic effect of EMO on chronic liver diseases and its mechanism, in order to provide a certain scientific basis for the traditional Chinese medicine treatment of chronic liver diseases and the development of drugs in clinical practice.
7.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
8.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.


Result Analysis
Print
Save
E-mail