1.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
4.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
5.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
6.Polysaccharide of Alocasia cucullata Exerts Antitumor Effect by Regulating Bcl-2, Caspase-3 and ERK1/2 Expressions during Long-Time Administration.
Qi-Chun ZHOU ; Shi-Lin XIAO ; Ru-Kun LIN ; Chan LI ; Zhi-Jie CHEN ; Yi-Fei CHEN ; Chao-Hua LUO ; Zhi-Xian MO ; Ying-Bo LIN
Chinese journal of integrative medicine 2024;30(1):52-61
OBJECTIVE:
To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.
METHODS:
B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.
RESULTS:
In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.
CONCLUSIONS
Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
Mice
;
Animals
;
Alocasia/metabolism*
;
MAP Kinase Signaling System
;
Caspase 3/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
7.Behavior of cartilage-derived microtissue and ability of cartilage formation in three-dimensional dynamic and static culture conditions
Wei LIU ; Hongyu JIANG ; Jiajie CHEN ; Yuyang GAO ; Yanjun GUAN ; Zhibo JIA ; Ying JIAO ; Zhen HUA ; Gehan JIANG ; Ying HE ; Aiyuan WANG ; Jiang PENG ; Jianhong QI
Chinese Journal of Tissue Engineering Research 2024;28(25):4022-4026
BACKGROUND:Compared with traditional two-dimensional culture,three-dimensional microtissue culture can show greater advantages.However,more favorable cultivation methods in three-dimensional culture still need to be further explored. OBJECTIVE:To evaluate the cell behavior of microtissue and its ability to promote cartilage formation under two three-dimensional culture methods. METHODS:Cartilage-derived microcarriers were prepared by chemical decellularization and tissue crushing.DNA quantification and nuclear staining were used to verify the success of decellularization,and histological staining was used to observe the matrix retention before and after decellularization.The microcarriers were characterized by scanning electron microscopy and CCK-8 assay.Cartilage-derived microtissues were constructed by combining cartilage-derived microcarriers with human adipose mesenchymal stem cells through three-dimensional static culture and three-dimensional dynamic culture methods.The cell viability and chondrogenic ability of the two groups of microtissues were detected by scanning electron microscopy,live and dead staining,and RT-qPCR. RESULTS AND CONCLUSION:(1)Cartilage-derived microcarriers were successfully prepared.Compared with before decellularization,the DNA content significantly decreased after decellularization(P<0.001).Scanning electron microscope observation showed that the surface of the microcarrier was surrounded by collagen,maintaining the characteristics of the natural extracellular matrix of cartilage cells.CCK-8 assay indicated that microcarriers had no cytotoxicity and could promote cell proliferation.(2)Scanning electron microscopy and live and dead staining results showed that compared with the three-dimensional static group,the three-dimensional dynamic group had a more extended morphology of microtissue cells,and extensive connections between cells and cells,between cells and matrix,and between matrix.(3)The results of RT-qPCR showed that the expressions of SOX9,proteoglycan,and type Ⅱ collagen in microtissues of both groups were increased at 7 or 14 days.The relative expression levels of each gene in the three-dimensional dynamic group were significantly higher than those in the three-dimensional static group at 14 days(P<0.05).At 21 days,the three-dimensional static group had significantly higher gene expression compared with the three-diomensional dynamic group(P<0.001).(4)The results showed that compared with three-dimensional static culture microtissue,three-dimensional dynamic culture microtissue could achieve higher expression of chondrogen-related genes in a shorter time,showing better cell viability and chondrogenic ability.
8.The role and mechanism of TLRs/MyD88/NF-κB signaling pathway in multiple sclerosis
Ying CHEN ; Tianqin XIA ; Jianlin HUA ; Jinzhu YIN ; Lijuan SONG ; Qing WANG ; Jiezhong YU ; Jianjun HUANG ; Cungen MA
Chinese Journal of Tissue Engineering Research 2024;28(28):4578-4585
BACKGROUND:Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system mediated by T cells.The Toll-like receptors(TLRs)/myeloid differentiation factor 88(MyD88)/nuclear factor kappa-B(NF-κB)signaling pathway plays an important role in the development of the disease.Exploring the specific mechanism of the signaling pathway is essential for further treatment of the disease and improving the prognosis of patients. OBJECTIVE:To review the TLRs/MyD88/NF-κB signaling pathway and its role in multiple sclerosis/experimental autoimmune encephalomyelitis models,which provides new ideas and strategies for the treatment of multiple sclerosis by inhibiting the TLRs/MyD88/NF-κB signaling pathway. METHODS:The literature related to the topic from January 2002 to December 2022 was searched in CNKI,WanFang and PubMed databases.A total of 61 articles were finally included for analysis. RESULTS AND CONCLUSION:The TLRs/MyD88/NF-κB signaling pathway is an important pathway that triggers a pro-inflammatory immune response.The TLRs/MyD88/NF-κB signaling pathway plays an important role in the development of multiple sclerosis by regulating the antigen presentation of dendritic cells,destroying the integrity of the blood-brain barrier,and promoting the activation of T cells,B cells and microglia.By targeting TLRs,MyD88 and NF-κB molecules,inhibiting the activation or signal transduction of TLRs,MyD88 and NF-κB,and reducing the secretion of pro-inflammatory factors,multiple sclerosis can be treated.Animal studies have shown that active ingredients of traditional Chinese medicines,such as flavonoids and glycosides,and traditional Chinese medicine compound formulas,such as Buyang Huanwu Tang,can also treat experimental autoimmune encephalomyelitis by regulating the TLRs/MyD88/NF-κB signaling pathway,which points to the direction of searching for medicines targeting the TLRs/MyD88/NF-κB signaling pathway for the treatment of multiple sclerosis.
9.Longitudinal extrauterine growth restriction in extremely preterm infants: current status and prediction model
Xiaofang HUANG ; Qi FENG ; Shuaijun LI ; Xiuying TIAN ; Yong JI ; Ying ZHOU ; Bo TIAN ; Yuemei LI ; Wei GUO ; Shufen ZHAI ; Haiying HE ; Xia LIU ; Rongxiu ZHENG ; Shasha FAN ; Li MA ; Hongyun WANG ; Xiaoying WANG ; Shanyamei HUANG ; Jinyu LI ; Hua XIE ; Xiaoxiang LI ; Pingping ZHANG ; Hua MEI ; Yanju HU ; Ming YANG ; Lu CHEN ; Yajing LI ; Xiaohong GU ; Shengshun QUE ; Xiaoxian YAN ; Haijuan WANG ; Lixia SUN ; Liang ZHANG ; Jiuye GUO
Chinese Journal of Neonatology 2024;39(3):136-144
Objective:To study the current status of longitudinal extrauterine growth restriction (EUGR) in extremely preterm infants (EPIs) and to develop a prediction model based on clinical data from multiple NICUs.Methods:From January 2017 to December 2018, EPIs admitted to 32 NICUs in North China were retrospectively studied. Their general conditions, nutritional support, complications during hospitalization and weight changes were reviewed. Weight loss between birth and discharge > 1SD was defined as longitudinal EUGR. The EPIs were assigned into longitudinal EUGR group and non-EUGR group and their nutritional support and weight changes were compared. The EPIs were randomly assigned into the training dataset and the validation dataset with a ratio of 7∶3. Univariate Cox regression analysis and multiple regression analysis were used in the training dataset to select the independent predictive factors. The best-fitting Nomogram model predicting longitudinal EUGR was established based on Akaike Information Criterion. The model was evaluated for discrimination efficacy, calibration and clinical decision curve analysis.Results:A total of 436 EPIs were included in this study, with a mean gestational age of (26.9±0.9) weeks and a birth weight of (989±171) g. The incidence of longitudinal EUGR was 82.3%(359/436). Seven variables (birth weight Z-score, weight loss, weight growth velocity, the proportion of breast milk ≥75% within 3 d before discharge, invasive mechanical ventilation ≥7 d, maternal antenatal corticosteroids use and bronchopulmonary dysplasia) were selected to establish the prediction model. The area under the receiver operating characteristic curve of the training dataset and the validation dataset were 0.870 (95% CI 0.820-0.920) and 0.879 (95% CI 0.815-0.942), suggesting good discrimination efficacy. The calibration curve indicated a good fit of the model ( P>0.05). The decision curve analysis showed positive net benefits at all thresholds. Conclusions:Currently, EPIs have a high incidence of longitudinal EUGR. The prediction model is helpful for early identification and intervention for EPIs with higher risks of longitudinal EUGR. It is necessary to expand the sample size and conduct prospective studies to optimize and validate the prediction model in the future.
10.Effect of RhoC silencing on migration and invasion of oral squamous cell carcinoma
Jie YANG ; Huan LI ; Xin WANG ; Zhenggang CHEN ; Ying WANG ; Quan LI ; Yingjie HUA ; Jing WANG ; Zengpeng CHI
Chinese Journal of Pathophysiology 2024;40(1):47-57
AIM:To explore the expression of RhoC in oral squamous cell carcinoma(OSCC)and its effects on the malignant biological behavior of OSCC cells.METHODS:The UALCAN and K-M plotter databases,alongside tis-sue sample analyses,facilitated understanding RhoC expression in cancer and its links to clinicopathological traits.Two small interfering RNAs(RhoC-siRNA)were constructed according to the RhoC gene sequence.The mRNA and protein ex-pression levels of RhoC in OSCC cells were determined.The protein levels of FAK,p-FAK,MAPK,p-MAPK,matrix me-talloproteinase-2(MMP-2)and MMP-9 were also examined by Western blot.Furthermore,the invasion and migration of OSCC cells were analyzed by Transwell assay and scratch test.Finally,the pulmonary metastasis model of nude mice was established.RESULTS:The results of the databases showed that RhoC was highly expressed in OSCC tissues,which was closely related to pathological stage,pathological grade and lymph node metastasis,but not significantly related to the sur-vival rate of patients.Furthermore,compared with paracancer tissues,the mRNA and protein expression levels of RhoC were increased in OSCC tissues(P<0.01).Silencing of RhoC prominently reduced the migration and invasion of OSCC cells as well as the protein levels of p-FAK,p-MAPK,MMP2 and MMP9(P<0.05).The protein levels of MAPK and FAK were unchanged(P>0.05).The fluorescence intensity of the experimental group was significantly lower than that of the control group,and the results of HE staining showed that the number of lung nodules in the experimental group was sig-nificantly reduced(P<0.05).CONCLUSION:RhoC can effectively influence the migration and invasion of OSCC cells,and its potential mechanism may be related to FAK/MAPK/MMPs signaling pathway.

Result Analysis
Print
Save
E-mail