1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Isolation andfunctional characterization of HO-hMSCs as NK-supportive cells derived from hematopoietic organoids
Shili TANG ; Bixuan LIN ; Enxia HUANG ; Ying HE ; Yuan XUE ; Yonggang ZHANG
Chinese Journal of Blood Transfusion 2025;38(5):644-651
Objective: In in vitro systems for differentiating and expanding natural killer (NK) cells, feeder cells provide essential cell-cell contact and paracrine signals that drive precursor proliferation and terminal maturation. However, existing xenogeneic feeder cells or tumor-derived genetically modified feeder cells pose risks of residual immunogenicity and malignant transformation, limiting clinical use. This study aims to develop a humanized mesenchymal-like stromal cell (hematopoietic organoid-derived human mesenchymal stromal cells, HO-hMSCs) derived from iPSC-based hematopoietic organoids, and elucidate its mechanisms of NK-supportive activity to enable a safe, efficient platform for clinical-grade NK cell production. Methods: Human induced pluripotent stem cells (iPSCs) were differentiated into hematopoietic organoids, from which HO-hMSCs were isolated. Flow-cytometric phenotyping and bulk RNA-sequencing were performed to compare HO-hMSCs with umbilical cord-derived MSCs (UC-hMSCs). The effect of HO-hMSCs on NK cell differentiation efficiency (CD3
CD56
) and effector maturation (CD16 expression) were assessed by co-culture experiments, using UC-hMSCs as control. Results: 1) Hematopoietic organoid induction and NK differentiation: iPSCs were induced to form hematopoietic organoids using cytokine cocktails, which further differentiated into high-purity CD45
CD56
NK cells [(82.8%±12.07)% efficiency on day 21]. 2) HO-hMSC characteristics: HO-hMSCs exhibited upregulated expression of Notch pathway ligands (DLL4, JAG1, 4.06-8.04-fold), homeobox genes (HOXA3, HOXA5, log
FC=1.28 and 1.44), and key regulators of NK development (GATA3, BCL11A) and cytokine receptors (IL7R, IL27RA, 6.76 to 13.34-fold increase). 3) Functional validation: Compared to UC-hMSCs, HO-hMSCs co-culture significantly enhanced NK cell proportion by 30.5% (P<0.05) and increased CD16 positivity (+20.5%). Conclusion: This study for the first time reveals that human hematopoietic organoid-derived HO-hMSCs possess potent hematopoietic niche-supportive activity. It provides a humanized, feeder-free platform for robust clinical-grade NK cell production and expands the translational utility of organoid technologies in cell therapy.
3.Effect of Biyan Jiedu Capsules on proliferation and apoptosis of nasopharyngeal carcinoma cells based on PI3K/Akt pathway.
Ting LIN ; Yang-Yang TAO ; Ying-Gang TANG ; Ju YUAN ; Hui-Ping DU ; Lin-Yu DENG ; Fang-Liang ZHOU ; Ying-Chun HE
China Journal of Chinese Materia Medica 2025;50(7):1920-1927
To investigate the effects of Biyan Jiedu Capsules on the proliferation and apoptosis of nasopharyngeal carcinoma cells and their molecular mechanism, nasopharyngeal carcinoma cells CNE1 and CNE2 were used. They were divided into control group(30% blank serum medium), low-(10% drug-containing serum + 20% blank serum medium), medium-(20% drug-containing serum + 10% blank serum medium), and high-(30% drug-containing serum medium) concentration group of Biyan Jiedu Capsules according to in vitro experiment. After 24 h of intervention, the effects of Biyan Jiedu Capsules on the proliferation of CNE1 and CNE2 were detected by CCK-8 assay, clonal formation experiment, and EdU staining. The effect of Biyan Jiedu Capsules on apoptosis of CNE1 and CNE2 was detected by flow cytometry. Western blot was used to detect the effect of Biyan Jiedu Capsules on the expression of X-linked apoptosis inhibitor protein(XIAP), survivin, proliferating cell nuclear antigen(PCNA), and PI3K/Akt pathway-related proteins in CNE1 and CNE2. The results showed that compared with the control group, the survival rate of CNE1 and CNE2 in the medium and high concentration groups of Biyan Jiedu Capsules could be decreased in a concentration-dependent way(P<0.05, P<0.01). At the same time, EdU staining and clonal formation experiments showed that the proliferation of CNE1 and CNE2 was significantly inhibited in the medium and high concentration groups of Biyan Jiedu Capsules(P<0.05, P<0.01). Flow cytometry showed that the apoptosis rate of CNE1 and CNE2 was significantly increased in all concentration groups of Biyan Jiedu Capsules(P<0.01), and the apoptosis rate was concentration-dependent. Western blot showed that the expressions of XIAP, survivin, PCNA, p-PI3K, and p-Akt in all concentration groups of Biyan Jiedu Capsules were significantly down-regulated(P<0.05, P<0.01). In conclusion, Biyan Jiedu Capsules can inhibit the proliferation and induce apoptosis of nasopharyngeal carcinoma cells possibly by down-regulating the PI3K/Akt signaling pathway.
Humans
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Nasopharyngeal Carcinoma
;
Nasopharyngeal Neoplasms/physiopathology*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cell Line, Tumor
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Capsules
;
Carcinoma/drug therapy*
4.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
5.Study on strategies and methods for discovering risk of traditional Chinese medicine-related liver injury based on real-world data: an example of Corydalis Rhizoma.
Long-Xin GUO ; Li LIN ; Yun-Juan GAO ; Min-Juan LONG ; Sheng-Kai ZHU ; Ying-Jie XU ; Xu ZHAO ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2025;50(13):3784-3795
In recent years, there have been frequent adverse reactions/events associated with traditional Chinese medicine(TCM), especially liver injury related to traditional non-toxic TCM, which requires adequate attention. Liver injury related to traditional non-toxic TCM is characterized by its sporadic and insidious nature and is influenced by various factors, making its detection and identification challenging. There is an urgent need to develop a strategy and method for early detection and recognition of traditional non-toxic TCM-related liver injury. This study was based on national adverse drug reaction monitoring center big data, integrating methodologies such as reporting odds ratio(ROR), network toxicology, and computational chemistry, so as to systematically research the risk signal identification and evaluation methods for TCM-related liver injury. The optimized ROR method was used to discover potential TCM with a risk of liver injury, and network toxicology and computational chemistry were used to identify potentially high-risk TCM. Additionally, typical clinical cases were analyzed for confirmation. An integrated strategy of "discovery via big data, identification via dry/wet method, confirmation via typical cases, and precise risk prevention and control" was developed to identify the risk of TCM-related liver injury. Corydalis Rhizoma was identified as a TCM with high risk, and its toxicity-related substances and potential toxicity mechanisms were analyzed. The results revealed that liver injury is associated with components such as tetrahydropalmatine and tetrahydroberberine, with potential mechanisms related to immune-inflammatory pathways such as the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and Th17 cell differentiation. This paper innovatively integrated real-world evidence and computational toxicology methods, offering insights and technical support for establishing a risk discovery and identification strategy for TCM-related liver injury based on real-world big data, providing innovative ideas and strategies for guiding the safe and rational use of medication in clinical practices.
Corydalis/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Chemical and Drug Induced Liver Injury/etiology*
;
Medicine, Chinese Traditional/adverse effects*
;
Rhizome/adverse effects*
;
Male
;
Female
6.Trend in testicular volume change after orchiopexy in 854 children with cryptorchidism.
Ying-Ying HE ; Zhi-Cong KE ; Shou-Lin LI ; Hui-Jie GUO ; Pei-Liang ZHANG ; Peng-Yu CHEN ; Wan-Hua XU ; Feng-Hao SUN ; Zhi-Lin YANG
Asian Journal of Andrology 2025;27(6):723-727
The aim of this study was to investigate the trend in testicular volume changes after orchiopexy in children with cryptorchidism. The clinical data of 854 children with cryptorchidism who underwent orchiopexy between January 2013 and December 2016 in Shenzhen Children's Hospital (Shenzhen, China) were retrospectively analyzed. The mean (standard deviation) age of the patients was 2.8 (2.5) years, and the duration of follow-up ranged from 1 year to 5 years. Ultrasonography was conducted preoperatively and postoperatively. The variables analyzed included age at the time of surgery, type of surgical procedure, laterality, preoperative testicular position, preoperative and postoperative testicular volumes, and the testicular volume ratio of them. The average testicular volumes preoperatively and at 1 year, 2 years, 3 years, and 5 years postoperatively were 0.27 ml, 0.38 ml, 0.53 ml, 0.87 ml, and 1.00 ml, respectively ( P < 0.001). The corresponding testicular volume ratios were 0.67, 0.76, 0.80, 0.83, and 0.84 ( P < 0.001). The mean volume of the undescended testes was significantly smaller than the mean normative value ( P < 0.001, lower than the 10 th percentile). The postoperative testicular volumes in children with cryptorchidism were generally lower than those in healthy boys but were still greater than the 10 th percentile and exhibited an increasing trend. The older the child is at the time of surgery, the larger the gap in volume between the affected and normal testes. Although testicular volume tends to gradually increase after orchiopexy for cryptorchidism, it could not normalizes. Earlier surgery results in affected testicular volumes closer to those of healthy boys.
Humans
;
Male
;
Cryptorchidism/diagnostic imaging*
;
Orchiopexy
;
Child, Preschool
;
Testis/surgery*
;
Retrospective Studies
;
Organ Size
;
Ultrasonography
;
Infant
;
Child
;
Postoperative Period
;
Follow-Up Studies
7.Construction and evaluation of a cell model simulating the change of testicular microenvironment mediated by hypoxic and high-pressure conditions in varicocele mice.
Shu-Lin LIANG ; Li-Guo GENG ; Ling HAN ; Chu-Nan RONG ; Zhan QIN ; Juan DU ; Chao-Ba HE ; Shao-Ying YUAN
National Journal of Andrology 2025;31(6):483-491
Objective: Varicocele (VC) induces male infertility by mediating changes in the testicular microenvironment, in which testicular hypoxia and high-pressure are important pathological conditions. This study aims to compare the mouse spermatogenesis (GC-2spd) cells and Sertoli (TM4) cells of mouse testis after hypoxic modeling and hypoxic and high-pressure combined modeling, and to explore the feasibility of establishing a hypoxic and high-pressure combined cell model. Methods: On the basis of cell hypoxia induced by CoCl2, the complex model of testicular cell hypoxia and high pressure was constructed by changing the osmotic pressure of GC-2 and TM4 cell medium with a high concentration of NaCl solution. After selecting the intervention concentration of CoCl2 by MTT test and detecting the expression level of HIF-1α for the determination of the optimal osmotic pressure conditions of the cell model, the cells were divided into normal group, hypoxia model group and composite model group. And the levels of OS, programmed cell death, inflammatory factors, and the expression levels of pyroptosis-related proteins were compared between the normal group and the groups with different modeling methods. Results: The optimal intervention concentration of CoCl2 in GC-2 and TM4 cells was 150 and 250μmol/L, respectively, and the expression of HIF-1α was the highest in both cells under osmotic pressure of 500 mOsmol/kg (P<0.05). Compared with the normal group, the SOD levels of GC-2 and TM4 cells decreased (all P<0.05), CAT level decreased (all P<0.05), and MDA level increased (all P<0.01), and the OS level of GC-2 and TM4 cells was more obvious than that of the hypoxia model group (all P<0.05). Compared with the normal group, apoptosis occurred in GC-2 and TM4 cells after composite modeling (all P<0.05). Compared with the normal group, the mRNA expressions of IL-1β, IL-18, TNF-α and COX-2 in GC-2 and TM4 cells significantly increased (P<0.01) and higher than those in hypoxia model group (P<0.05) and induced pyroptosis (P<0.01). The expression level of GSDMD increased (P<0.05). Conclusion: The cell model with hypoxia and high pressure combined modeling can not only induce oxidative stress and apoptosis of cells better than that with hypoxia alone, but also further cause inflammatory response damage and pyroptosis, which simulates the changes of testis microenvironment mediated by hypoxia and high pressure combined conditions in VC. This cell model can be used for studying the pathogenesis of VC-associated male infertility, evaluating drug efficacy, and exploring pharmacological mechanisms.
Male
;
Animals
;
Varicocele/pathology*
;
Mice
;
Testis/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Hypoxia
;
Cobalt
;
Sertoli Cells/metabolism*
;
Osmotic Pressure
;
Spermatogenesis
;
Cellular Microenvironment
;
Infertility, Male
;
Disease Models, Animal
8.Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota.
Si MEI ; Zhe DENG ; Fan-Ying MENG ; Qian-Qian GUO ; He-Yun TAO ; Lin ZHANG ; Chang XI ; Qing ZHOU ; Xue-Fei TIAN
Chinese journal of integrative medicine 2025;31(9):802-811
OBJECTIVES:
To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).
METHODS:
The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.
RESULTS:
The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.
CONCLUSION
SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Liver Neoplasms/microbiology*
;
Carcinoma, Hepatocellular/microbiology*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Powders
;
Cell Proliferation/drug effects*
;
Mice
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Hep G2 Cells
;
Receptors, Adrenergic, beta-2/genetics*
;
Stress, Physiological/drug effects*
;
Cell Movement/drug effects*
;
Male
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Proto-Oncogene Mas
9.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
10.Effects of metformin on gut microbiota and short-/medium-chain fatty acids in high-fat diet rats.
Ying SHI ; Lin XING ; Shanyu WU ; Fangzhi YUE ; Tianqiong HE ; Jing ZHANG ; Lingxuan OUYANG ; Suisui GAO ; Dongmei ZHANG ; Zhijun ZHOU
Journal of Central South University(Medical Sciences) 2025;50(5):851-863
OBJECTIVES:
Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.
METHODS:
Twenty-four Sprague-Dawley rats were randomly divided into 3 groups: 1) Normal diet group (ND group), fed standard chow; 2) high-fat diet group (HFD group), fed a high-fat diet; 3) high-fat diet + metformin treatment group (HFD+Met group), fed a high-fat diet for 8 weeks, followed by daily intragastric administration of metformin solution (150 mg/kg body weight) starting in week 9. At the end of the experiment, all rats were sacrificed, and serum, liver, and colonic contents were collected for assessment of glucose and lipid metabolism, liver pathology, gut microbiota composition, and the concentrations of short-/medium-chain fatty acids.
RESULTS:
Metformin significantly improved HFD-induced glucose and lipid metabolic disorders and liver injury. Compared with the HFD group, the HFD+Met group showed reduced abundance of Blautia, Romboutsia, Bilophila, and Bacteroides, while Lactobacillus abundance significantly increased (all P<0.05). Colonic contents of butyric acid, 2-methyl butyric acid, valeric acid, octanoic acid, and lauric acid were significantly elevated (all P<0.05), whereas acetic acid, isoheptanoic acid, and nonanoic acid levels were significantly decreased (all P<0.05). Spearman correlation analysis revealed that Lactobacillus abundance was negatively correlated with body weight gain and insulin resistance, while butyrate and valerate levels were negatively correlated with insulin resistance and liver injury (all P<0.05).
CONCLUSIONS
Metformin significantly increases the abundance of beneficial bacteria such as Lactobacillus and promotes the production of short-/medium-chain fatty acids including butyric, valeric, and lauric acid in the colonic contents of HFD rats, suggesting that metformin may regulate host metabolism through modulation of the gut microbiota.
Animals
;
Metformin/pharmacology*
;
Rats, Sprague-Dawley
;
Diet, High-Fat/adverse effects*
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Fatty Acids, Volatile/metabolism*
;
Fatty Acids/metabolism*

Result Analysis
Print
Save
E-mail