1.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
2.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
3.Causal relationship between gout and Alzheimer's disease: a two-sample Mendelian randomization analysis
Chuijia KONG ; Ying ZHANG ; Zhenkun TAN ; Junjiao PING ; Haibo ZHANG ; Jie ZHANG ; Jiali LUO ; Xinxia LIU
Sichuan Mental Health 2025;38(2):115-122
BackgroundDementia seriously affects the quality of life and lifespan of elderly people, with Alzheimer's disease (AD) being the most common type of dementia. Previous studies have suggested that gout may reduce the risk of developing AD, but the causal relationship between the two still requires further research. ObjectiveTo investigate the potential causal relationship between gout and AD through a two-sample Mendelian randomization (MR) analysis, so as to provide references for the prevention and treatment of AD. MethodsData from Genome-Wide Association Studies (GWAS) extracted in 2024 were analyzed, using pooled data on gout (6 810 cases in the case group and 477 788 cases in the control group) published by UK Biobank in 2021 as the exposure variable, and data on AD (3 899 cases in the case group and 214 893 cases in the control group) published by FinnGen in the same year as the outcome variable. The inverse-variance weighted, MR-Egger regression, weighted median estimation, simple model and weighted model were used to analyze the potential causal relationship between gout and AD. Pleiotropic effects were assessed using MR-Egger regression. Heterogeneity assessment was conducted using Cochran's Q test. The leave-one-out analysis was carried out for sensitivity analysis. And a funnel plot was drawn to detect potential publication bias. ResultsThe inverse-variance weighted analysis demonstrated a negative causal relationship between gout and AD (OR=0.004, 95% CI: 0~0.700, P<0.05). The plot resembled a symmetrical inversed funnel, indicating the absence of publication bias. No heterogeneity was detected by Cochran's Q test. The MR-Egger regression indicated no significant horizontal pleiotropy. Concerning the reverse directions, no significant associations between AD and gout were noted. ConclusionThere is a negative causal relationship between gout and AD, with gout potentially reducing the risk of developing AD. [Funded by The Third Batch of Social Welfare and Basic Research Projects (Medical and Health) of Zhongshan City in 2022 (number, 2022B3017)]
4.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
5.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
6.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
7.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
8.Optimization of Processing Technology of Honey Bran-fried Rosae Laevigatae Fructus and Analysis of Its Mechanism in Treatment of Ulcerative Colitis
Bin LIU ; Lingyun ZHONG ; Hongbing LUO ; Qi DENG ; Fuyu XU ; Simin ZHONG ; Ying ZHOU ; Xide YE ; Feipeng GONG ; Yuncheng GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):216-224
ObjectiveTo optimize the processing technology of honey bran-fried Rosae Laevigatae Fructus(h-RLF), formulate relevant quality standards, and explore its improving effect and mechanism on mice with ulcerative colitis(UC) induced by dextran sodium sulfate(DSS). MethodsTaking the content of polysaccharides and water-soluble extract as the indexes, L9(34) orthogonal test was used to optimize parameters of the amount of honey bran, frying time and frying temperature. The quality of 15 batches of h-RLF decoction pieces was evaluated according to the optimized process, and the inspection limit standard was preliminarily drawn up. Eighty SPF male Kunming mice were randomly divided into 8 groups, including the blank group, model group, mesalazine group(0.13 g·kg-1), RLF group(3.77 g·kg-1), bran-fried RLF group(3.77 g·kg-1), h-RLF low, medium and high dose groups(1.89, 3.77, 7.54 g·kg-1), with 10 mice in each group. The mice in the blank group were free to drink pure water, and the other groups were free to drink 3% DSS solution for 7 days to prepare UC mouse model. Each treatment group was given corresponding drugs by intragastric administration, and the blank and model groups were given equal volume of normal saline. The body weight of mice was recorded daily and the disease activity index(DAI) was calculated. After the administration, the colon tissues of mice were collected to observe the pathological changes by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor(TNF)-α, interleukin(IL)-1β, IL-6 and IL-10 in the colon of mice were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression levels of phosphorylation nuclear transcription factor-κB p65(p-NF-κB p65), Toll-like receptor 4(TLR4), p-p38 mitogen-activated protein kinase(p-p38 MAPK), p-extracellular signal-regulated kinase(p-ERK) and p-c-Jun N-terminal kinase(p-JNK) proteins in colon tissues. ResultsThe optimum processing technology of h-RLF was 20 g honey bran per 100 g RLF, and stir-frying at 200 ℃ for 8 min. The limit standard under the examination of h-RLF was preliminarily formulated as follows:the polysaccharide content should not be less than 25% based on anhydrous glucose(C6H12O6), the content of water-soluble extract should not be less than 38%, the moisture content should not be more than 12.0%, the total ash content should not be more than 5.0%, and the acid-insoluble ash content should not be more than 1.0%. The cluster heat map analysis showed that the quality of RLF from Huanggang, Hubei province was better. Animal experiments showed that compared with the blank group, the DAI score of the model group was significantly increased, the levels of TNF-α, IL-1β and IL-6 in the colon tissue were significantly increased, the IL-10 level was significantly decreased, the colonic mucosa was seriously damaged, accompanied by a large number of inflammatory cell infiltration, tissue congestion and a significant reduction in glands, and the expression levels of p-NF-κB p65, TLR4, p-p38 MAPK, p-ERK and p-JNK proteins were significantly increased(P<0.01). Compared with the model group, each administration group could alleviate the symptoms of colonic ulcer, the structure of colonic crypt was basically intact, and the glands were arranged in an orderly manner. Among them, the high-dose group of h-RLF had a better effect, which could significantly reduce the DAI score and the levels of TNF-α, IL-1β and IL-6 in colon tissue(P<0.01), and significantly increase the level of IL-10(P<0.01), alleviate the colonic mucosal injury, and effectively inhibit the expression levels of p-NF-κB p65, TLR4, p-p38 MAPK, p-ERK and p-JNK proteins(P<0.01). ConclusionThe key parameters of the processing technology of h-RLF are determined, and the optimized technology is stable and feasible. The established quality standard is simple and reliable, and can be used for the quality control. h-RLF can effectively alleviate DSS-induced UC, and its mechanism may be related to inhibiting the activation of NF-κB/TLR4/MAPK pathway.
9.Association between urinary metal mixtures and mild cognitive impairment among elderly residents in Guangdong compounds
Chuijia KONG ; Ying ZHANG ; Zhenkun TAN ; Junjiao PING ; Haibo ZHANG ; Jiali LUO ; Xinxia LIU
Journal of Environmental and Occupational Medicine 2025;42(8):893-899
Background Environmental metal exposure is closely associated with the onset and progression of mild cognitive impairment (MCI) in the elderly. Effectively identifying hazardous metal exposure and assessing their interaction effects have significant public health implications. Objective To explore the relationship between urinary single metal and metal mixture exposure and MCI in elderly compound residents. Methods This study included 391 elderly individuals aged 60 and above from residential compounds in Zhongshan City, Guangdong Province. Concentrations of iron (Fe), copper (Cu), selenium (Se), arsenic (As), cadmium (Cd), manganese (Mn), chromium (Cr), nickel (Ni), vanadium (V), cobalt (Co), antimony (Sb), thallium (Tl), zinc (Zn), calcium (Ca), and magnesium (Mg) in urine were measured using inductively coupled plasma mass spectrometry. Cognitive function in the elderly was assessed using the Chinese version of the Mini-Mental State Examination (MMSE). Logistic regression was used to explore the relationship between single metal exposure level and MCI. LASSO regression and multi-metal logistic regression models were used to identify key metal ions associated with MCI. Bayesian kernel machine regression (BKMR) was employed to analyze the relationship between key metal ion mixtures and MCI, as well as the interactions between metals. Age, gender, education level, occupation, and body mass index were adjusted as covariates. Results A total of 78 among the 391 elderly individuals surveyed (19.94%) were diagnosed with MCI (MCI group), and the other 313 individuals were controls. The levels of Se, Cd, Mn, and As in the urine of the MCI group were significantly higher than those in the control group (P < 0.05). In the single-metal model, after adjusting for covariates and using the first quartile (Q1) of each metal concentration as the reference, the OR for MCI in the elderly in the Q4 group of Se was 2.190 (95%CI: 1.017, 4.716); for Cd, the OR was 2.345 (95%CI: 1.041, 5.283) in the Q3 group and 2.371 (95%CI: 1.043, 5.393) in the Q4 group; for Mn, the OR was 2.355 (95%CI: 1.038, 5.344) in the Q2 group; for As, the OR was 3.377 (95%CI: 1.442, 7.908) in the Q3 group and 2.886 (95%CI: 1.227, 6.788) in the Q4 group; for Sb, the OR was 2.779 (95%CI: 1.234, 6.257) in the Q2 group. When urinary metal concentrations were ln-transformed and included as continuous variables in the single-metal model, Cd concentration was positively correlated with MCI (OR=1.377; 95%CI: 1.008, 1.882; P=0.044). Cd, Se, Mg, Ca, Mn, As, Cr, Co, Tl, and Sb were selected by the LASSO regression model and included in the multi-metal model. In the multi-metal model, compared with Q1, the OR for MCI in the elderly was 0.395 (95%CI: 0.164, 0.953) in the Q2 group of Co and 0.390(95%CI: 0.167,0.911) in the Q3 group of Co; for Mn, the OR in the Q2 group was 2.636 (95%CI: 1.053, 6.596); for Sb, the OR in the Q2 group was 2.640 (95%CI: 1.047, 6.658). As continuous variables, Mg (OR=0.472; 95%CI: 0.248, 0.899; P=0.022) and Co (OR=0.857; 95%CI: 0.737, 0.996; P=0.044) concentrations were negatively correlated with MCI. The BKMR mixture analysis suggested that Mg and Co exhibited a synergistic negative correlation with MCI, while Mn and Sb exhibited a synergistic positive correlation with MCI. Mg and Co attenuated the positive correlation of Mn and Sb with MCI, whereas Mn weakened the protective effects of Mg and Co. Conclusion Elevated levels of Se, Cd, As, Mn, and Sb in urine may increase the risk of MCI in the elderly, while Mg and Co have protective effects. Potential synergistic or antagonistic interactions may be found among Mn, Sb, Mg, and Co, which should not be overlooked in terms of their impact on the cognitive function of the elderly.
10.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*

Result Analysis
Print
Save
E-mail