1.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
2.Effects of two intermittent fasting strategies on postprandial lipid metabolism in adults
Manman SHAO ; Xiaohui WEI ; Yuanchao LI ; Mingjing XU ; Tao YING ; Gengsheng HE ; Yuwei LIU
Shanghai Journal of Preventive Medicine 2025;37(1):64-71
ObjectiveTo investigate the effects and potential mechanisms of morning and evening fasting on postprandial lipid responses, a post hoc analysis based on a crossover randomized controlled trial was conducted to assess the effects of different fasting strategies on postprandial lipid metabolism in community residents in Shanghai. MethodsA total of 23 participants took part in a randomized crossover trial involving two intervention days: morning fasting and evening fasting, with a washout period of 6 days between intervention days. Two-way analysis of variance was used to test the differences in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the relative expression of circadian clock genes before and after the next meal under fasting. Wilcoxon rank sum tests were used to analyze the different metabolites between the two groups. Principal component analysis and Orthogonal partial least squares-discriminant analysis were conducted to evaluate the ability of metabolites to differentiate between morning fasting and evening fasting and identify the important differential metabolites. After adjusting for age, sex, and BMI, a partial correlation analysis was performed to identify metabolites associated with plasma lipids. In addition, important metabolites associated with plasma lipids were computed by pathway enrichment analysis. ResultsAfter evening fasting intervention, fasting TG level [(0.37±0.29) vs (0.27±0.18)] mmol·L-1, fasting and postprandial change values in TC [(2.74±0.47) vs (2.51±0.27)] mmol·L-1 and LDL-C [(1.32±0.38) vs (0.99±0.27)] mmol·L-1 were significantly lower than those after morning fasting (P<0.05). While, change values of fasting LDL-C [(0.89±0.37) vs (1.14±0.37)] mmol·L-1 and TG [(1.14±0.19) vs (1.28±0.17)] mmol·L-1 were significantly higher than those after morning fasting intervention (P<0.05). After fasting intervention, the relative expression of AMPK, CRY1, CLOCK, MTNR1B, AANAT, and ASMT was correlated with the amount of plasma lipid changes (P<0.05). Specifically, CLOCK and AANAT were upregulated following evening fasting and downregulated after morning fasting. Among the 217 important differential metabolites, 111 were correlated with plasma lipids, and which were primarily enriched in the cysteine and methionine metabolism pathways (P<0.05). ConclusionCompared to morning fasting, evening fasting was more effective in improving postprandial lipid responses, indicating that an evening fasting window during intermittent fasting could be conducive to cardiovascular disease prevention in adults. Meanwhile, it is suggested that morning and evening fasting may affect lipid responses through circadian rhythm oscillations and the cysteine and methionine metabolism pathways.
3.Overexpression of Ptpn2 inhibits SiO2-mediated inflammatory response in alveolar type II epithelial cells
Mengfei FENG ; Yi WEI ; Xinru SUN ; Jingshuo GONG ; Xuemin GAO ; Hong XU ; Ying ZHU
Journal of Environmental and Occupational Medicine 2025;42(4):482-489
Background Protein tyrosine phosphatase non-receptor type II (PTPN2) is essential for the regulation of inflammation and immunity, but the specific mechanism of action of Ptpn2 in silicosis is unknown. Objective To investigate the regulatory role of overexpression of Ptpn2 in SiO2-mediated inflammatory response in alveolar type II epithelial cells based on transcriptome sequencing. Methods This study was an in vitro study. A negative control group (vector transferred) and an overexpression of Ptpn2 group of mouse lung epithelial cell line MLE-12 cells were firstly constructed. Transcriptome sequencing was performed to detect differentially expressed genes (DEGs), differentially expressed mRNAs, and differentially expressed ncRNAs in the two groups of MLE-12 cells, and then the DEGs were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Constructed MLE-12 cells and A549 cells were stimulated using SiO2 suspension, and divided into a negative control group (vector transferred), an overexpression of Ptpn2 group, a negative control + SiO2 group, and an overexpression of Ptpn2 + SiO2 group, respectively. Protein expressions of tumor necrosis factor-α (TNF-α) and interleukin (IL)-17A, IL-2, IL-1β were detected by Western blot. Positive TNF-α expression was detected by immunofluorescence staining. Results The results of Western blot showed that the protein expression level of PTPN2 was up-regulated in the overexpressed Ptpn2 group compared with the negative control group (P < 0.05). The volcano plot and clustering heat map showed that there were
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Postoperative Stage-based Functional Protection Strategies for Lung Cancer Based on Theory of "Lungs Governing Qi"
Luchang CAO ; Guanghui ZHU ; Ruike GAO ; Manman XU ; Xiaoyu ZHU ; Wei HOU ; Ying ZHANG ; Jie LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):86-93
Lung cancer (LC) is a significant global public health issue, with both its incidence and mortality rates ranking among the highest worldwide. The age-standardized incidence and mortality rates are increasing annually, posing a serious threat to the life and health of LC patients. Radical surgical resection is the primary treatment for malignant lung tumors. However, postoperative multidimensional functional impairments, including respiratory, mucosal, and psychological functions, are common. These impairments not only reduce patients' quality of life and affect their treatment tolerance and duration, but also negatively correlate with prognosis, facilitating disease recurrence and metastasis. At present, postoperative functional dysfunction after LC surgery remains a key clinical challenge that urgently needs to be addressed. There is a lack of standardized and regulated postoperative rehabilitation treatment management and traditional Chinese medicine (TCM) differentiation and treatment strategies for LC. Focusing on the core underlying pathogenesis of "Qi sinking" after LC surgery, and guided by the classical TCM theory of "lungs governing Qi", this study, based on the core concept of the "five perspectives on treatment" theory, innovatively proposes the respiratory dysfunction as the core pathogenesis of "Qi sinking in the chest" during the rapid rehabilitation phase, mucosal dysfunction as the core pathogenesis of "Yin deficiency and Qi sinking" during the postoperative adjuvant treatment phase, and the psychological dysfunction as the core pathogenesis of "Qi sinking with emotional constraint" during the consolidation phase. Accordingly, stage-specific dynamic functional protection strategies are constructed. In the rapid rehabilitation phase, the strategy emphasizes tonifying Qi and uplifting sinking Qi, with differentiation and treatment based on the principle of ''descending before ascending''. In the adjuvant treatment phase, the approach focuses on nourishing Yin and uplifting Qi, with prescription combinations that integrate unblocking and tonification. In the consolidation phase, the strategy aims to resolve constraint and uplift Qi, with clinical treatment emphasizing a combination of dynamic and static methods. At each stage of functional rehabilitation, clinical differentiation and treatment should support healthy Qi and eliminate pathogenic factors simultaneously. This study is the first to propose the concept of postoperative functional protection in TCM, offering a new approach for TCM differentiation and treatment in the full-cycle, stage-based, and dynamic protection of postoperative function in LC patients. It is expected to contribute to the construction and development of an integrated TCM-Western medicine comprehensive program for cancer prevention and treatment in China.
8.Shexiang Tongxin dropping pills ameliorate myocardial ischemia-reperfusion injury progression via the S1PR2/RhoA/ROCK pathway
Ying Sun ; Boyang Jiao ; Yizhou Liu ; Ran Wang ; Qiong Deng ; David N Criddle ; Yulin Ouyang ; Wei Wang ; Xuegong Xu ; Chun Li
Journal of Traditional Chinese Medical Sciences 2025;2025(1):31-43
Objective:
To investigate the potential protective effect of Shexiang Tongxin dropping pills (STDP) on ischemia-reperfusion injury and its underlying mechanisms in improving endothelial cell function in coronary microvascular disease (CMVD).
Methods:
A rat model of myocardial ischemia-reperfusion injury with CMVD was established using ligation and reperfusion of the left anterior descending artery. The effect of STDP (21.6 mg/kg) on cardiac function was evaluated using echocardiography, hematoxylin-eosin staining, and Evans blue staining. The effects of STDP on the microvascular endothelial barrier were assessed based on nitric oxide production, endothelial nitric oxide synthase expression, structural variety of tight junctions (TJs), and the expression of zonula occludens-1 (ZO-1), claudin-5, occludin, and vascular endothelial (VE)-cadherin proteins. The mechanisms of STDP (50 and 100 ng/mL) were evaluated by examining the expression of sphingosine 1-phosphate receptor 2 (S1PR2), Ras Homolog family member A (RhoA), and Rho-associated coiled-coil-containing protein kinase (ROCK) proteins and the distribution of ZO-1, VE-cadherin, and F-actin proteins in an oxygen and glucose deprivation/reoxygenation model.
Results:
The administration of STDP on CMVD rat model significantly improved cardiac and microvascular endothelial cell barrier functions (all P < .05). STDP enhanced the structural integrity of coronary microvascular positioning and distribution by clarifying and completing TJs and increasing the expression of ZO-1, occludin, claudin-5, and VE-cadherin in vivo (all P < .05). The S1PR2/RhoA/ROCK pathway was inhibited by STDP in vitro, leading to the regulation of endothelial cell TJs, adhesion junctions, and cytoskeletal morphology.
Conclusion
STDP showed protective effects on cardiac impairment and microvascular endothelial barrier injury in CMVD model rats induced by myocardial ischemia-reperfusion injury through the modulation of the S1PR2/RhoA/ROCK pathway.
9.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
10.Safety and effectiveness of lecanemab in Chinese patients with early Alzheimer's disease: Evidence from a multidimensional real-world study.
Wenyan KANG ; Chao GAO ; Xiaoyan LI ; Xiaoxue WANG ; Huizhu ZHONG ; Qiao WEI ; Yonghua TANG ; Peijian HUANG ; Ruinan SHEN ; Lingyun CHEN ; Jing ZHANG ; Rong FANG ; Wei WEI ; Fengjuan ZHANG ; Gaiyan ZHOU ; Weihong YUAN ; Xi CHEN ; Zhao YANG ; Ying WU ; Wenli XU ; Shuo ZHU ; Liwen ZHANG ; Naying HE ; Weihuan FANG ; Miao ZHANG ; Yu ZHANG ; Huijun JU ; Yaya BAI ; Jun LIU
Chinese Medical Journal 2025;138(22):2907-2916
INTRODUCTION:
Lecanemab has shown promise in treating early Alzheimer's disease (AD), but its safety and efficacy in Chinese populations remain unexplored. This study aimed to evaluate the safety and 6-month clinical outcomes of lecanemab in Chinese patients with mild cognitive impairment (MCI) or mild AD.
METHODS:
In this single-arm, real-world study, participants with MCI due to AD or mild AD received biweekly intravenous lecanemab (10 mg/kg). The study was conducted at Hainan Branch, Ruijin Hospital Shanghai Jiao Tong University School of Medicine. Patient enrollment and baseline assessments commenced in November 2023. Safety assessments included monitoring for amyloid-related imaging abnormalities (ARIA) and other adverse events. Clinical and biomarker changes from baseline to 6 months were evaluated using cognitive scales (mini-mental state examination [MMSE], montreal cognitive assessment [MoCA], clinical dementia rating-sum of boxes [CDR-SB]), plasma biomarker analysis, and advanced neuroimaging.
RESULTS:
A total of 64 patients were enrolled in this ongoing real-world study. Safety analysis revealed predominantly mild adverse events, with infusion-related reactions (20.3%, 13/64) being the most common. Of these, 69.2% (9/13) occurred during the initial infusion and 84.6% (11/13) did not recur. ARIA-H (microhemorrhages/superficial siderosis) and ARIA-E (edema/effusion) were observed in 9.4% (6/64) and 3.1% (2/64) of participants, respectively, with only two symptomatic cases (one ARIA-E presenting with headache and one ARIA-H with visual disturbances). After 6 months of treatment, cognitive scores remained stable compared to baseline (MMSE: 22.33 ± 5.58 vs . 21.27 ± 4.30, P = 0.733; MoCA: 16.38 ± 6.67 vs . 15.90 ± 4.78, P = 0.785; CDR-SB: 2.30 ± 1.65 vs . 3.16 ± 1.72, P = 0.357), while significantly increasing plasma amyloid-β 42 (Aβ42) (+21.42%) and Aβ40 (+23.53%) levels compared to baseline.
CONCLUSIONS:
Lecanemab demonstrated a favorable safety profile in Chinese patients with early AD. Cognitive stability and biomarker changes over 6 months suggest potential efficacy, though high dropout rates and absence of a control group warrant cautious interpretation. These findings provide preliminary real-world evidence for lecanemab's use in China, supporting further investigation in larger controlled studies.
REGISTRATION
ClinicalTrials.gov , NCT07034222.
Humans
;
Alzheimer Disease/drug therapy*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Cognitive Dysfunction/drug therapy*
;
Aged, 80 and over
;
Amyloid beta-Peptides/metabolism*
;
Biomarkers
;
East Asian People


Result Analysis
Print
Save
E-mail