1.Feasibility of Automatic Treatment Planning in Intensity-modulated Radiotherapy of Nasopharyngeal Carcinoma.
Yinbo HE ; Longbin ZHANG ; Jianghong XIAO ; Baofeng DUAN
Journal of Biomedical Engineering 2015;32(6):1288-1293
Intensity-modulated radiotherapy planning for nasopharyngeal carcinoma is very complex. The quality of plan is often closely linked to the experience of the treatment planner. In this study, 10 nasopharyngeal carcinoma patients at different stages were enrolled. Based on the scripting of Pinnacle 9. 2 treatment planning system, the computer program was used to set the basic parameters and objective parameters of the plans. At last, the nasopharyngeal carcinoma intensity-modulated radiotherapy plans were completed automatically. Then, the automatical and manual intensity-modulated radiotherapy plans were statistically compared and clinically evaluated. The results showed that there were no significant differences between those two kinds of plans with respect to the dosimetry parameters of most targets and organs at risk. The automatical nasopharyngeal carcinoma intensity-modulated radiotherapy plans can meet the requirements of clinical radiotherapy, significantly reduce planning time, and avoid the influence of human factors such as lack of experience to the quality of plan.
Carcinoma
;
Feasibility Studies
;
Humans
;
Nasopharyngeal Neoplasms
;
radiotherapy
;
Radiometry
;
Radiotherapy Dosage
;
Radiotherapy Planning, Computer-Assisted
;
Radiotherapy, Intensity-Modulated
2.Advanced glycation end products influence osteoclast-induced bone resorption
Ziqing LI ; Haixing WANG ; Peiheng HE ; Guotian LUO ; Yinbo XIAO ; Shuai HUANG ; Xing LI ; Puyi SHENG ; Chaohong LI ; Dongliang XU
Chinese Journal of Tissue Engineering Research 2016;20(20):2907-2914
BACKGROUND:The effects of advanced glycation end products (AGEs) on osteoclast-induced bone resorption is controversial and the underlying mechanisms remain unclear. Most of the studies indicate that AGEs can enhance bone resorption, while some othersshowthe opposite effects.
OBJECTIVE:To investigate the effects of AGEs on osteoclast-induced inorganicmatrixdissolution and organic componentdegradation and the underlying mechanisms.
METHODS:RAW 264.7 cels were induced to generate osteoclasts,and AGEs (50-400 μg/mL) or control-bovine serum albumin (100 μg/mL) was added since the beginning of the induction. The effect of AGEs on bone resorption was evaluated by analyzing the area of resorption pits on the Osteo Assay Surface plates and the expression of cathepsin K. Furthermore, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cels, nuclei per osteoclasts and the expression of integrinανβ3were detected.
RESULTS AND CONCLUSION:The area of resorption pits and expression of cathepsin K in AGEs groups were significantly decreased compared withthecontrol group, and this inhibiting effect became more obvious with the increase of AGEs concentration. TRAP staining also showed that number of TRAP-positivemultinucleated celsand nuclei per osteoclast were significantly reduced in an AGE dose-dependent manner. Quantitative PCR revealed that the expression of integrin ανβ3decreased significantly with the extension of AGEs incubation time. These data indicate that AGEs can exert inhibitory effects on organic and inorganicmatrixdegradation induced by osteoclasts. The underlying mechanism may be involved in the inhibitory effects of AGEs on directed differentiation and cel fusion of osteoclast precursor cels, and migration and adhension of osteoclasts.
3.Preliminary study of stereotactic cardiac radioablation in radiotherapy of ventricular arrhythmia
Jing LI ; Qingyong CHEN ; Guangjun LI ; Yan LI ; Yingjie ZHANG ; Changhu LI ; Long BAI ; Renming ZHONG ; Yinbo HE ; Sen BAI ; Qing YANG ; Feng XU
Chinese Journal of Radiation Oncology 2022;31(3):260-265
Objective:To introduce the stereotactic cardiac radioablation (SCRA) based on the stereotactic body radiotherapy (SBRT), and comprehensively evaluate the new approach by short-term effectiveness and safety.Methods:Patients with ventricular arrhythmia (VA) were evaluated and included in this clinical trial, who were immobilized by vacuum bag and performed simulation with 4-dimensional computed tomography (4DCT). In this study, the planning target volume (PTV) was set as the target to design a SBRT plan using volumetric modulated arc therapy (VMAT), which was evaluated by dose parameters such as R 50%, homogeneity index and conformity index, etc. The results of Holter and echocardiography were monitored during the follow-up and compared with the data before treatment. Results:Three subjects with ventricular tachycardia (VT) and one with premature ventricular contraction (PVC) received the same prescription of 25 Gy in a single fraction. The average volume of PTV was 71.4 cm 3(60.3-89.4 cm 3). The average time of beam delivery was 12.0 min (4.5-21.0 min). And the short-term follow-up lasted for an average of 18 weeks (14-25 weeks), which showed significant decrease in both VT and PVC load without complications. Conclusion:This study reports the implementation method of SCRA and proves its short-term effectiveness and safety, but the effects and standards of the key radiotherapy techniques still need to be explored.
4.The setup errors of thermoplastic head and shoulder molds with or without vacuum pad in HFSRT for brain metastases in the lung cancer
An LI ; Jia LIU ; Jialu LAI ; Qiang WANG ; Qingfeng XU ; Renming ZHONG ; Yinbo HE ; Sen BAI ; Lin ZHOU
Chinese Journal of Radiation Oncology 2021;30(6):592-597
Objective:To retrospectively analyze the setup errors of thermoplastic head and shoulder molds alone or combined with vacuum pad in hypofractionated stereotactic radiotherapy (HFSRT) for non-small cell lung cancer (NSCLC) with brain metastases.Methods:Fifty-four NSCLC patients with brain metastases who received HFSRT from 2017 to 2019 were enrolled in this study. Twenty-four patients were fixed with thermoplastic head and shoulder molds (group A), and 30 patients were fixed with thermoplastic head and shoulder molds plus vacuum pad (group B). The interfraction and intrafraction setup errors were acquired from cone-beam CT online image registration before and after the HFSRT. Optical surface system was applied in monitoring the intrafraction setup errors. The setup errors in each direction between two groups were analyzed by independent samples t-test. Results:For the interfraction setup errors of the whole group, the proportion of the horizontal setup errors of ≥3mm was 7.0% to 15.4% and 7.0% to 12.6% for the rotation setup errors of ≥2°. In group A, the anteroposterior setup error was (1.035±1.180)mm, significantly less than (1.512±0.955)mm in group B ( P=0.009). In group A, the sagittal rotation setup error was 0.665°±0.582°, significantly less than 0.921°±0.682° in group B ( P=0.021). For the intrafraction setup errors of the whole group, the proportion of horizontal setup errors of ≥1mm was 0% to 0.7%, whereas no rotation setup error of ≥1° were observed. In group B, bilateral, anteroposterior and sagittal rotation setup errors were (0.047±0.212)mm, (0.023±0.152)mm and 0.091°±0.090°, significantly less compared with (0.246±0.474)mm, (0.140±0.350)mm and 0.181°±0.210° in group A ( P=0.004, P=0.020, P=0.001), respectively. Optical surface monitoring data were consistent with the obtained results. Conclusions:Thermoplastic head and shoulder molds (with or without vacuum pad) combined with online image registration and six-dimensional robotic couch correction can be applied in HFSRT for brain metastases from NSCLC. The intrafraction setup errors in group B are smaller than those in group A. Optical surface system has certain value in monitoring the intrafractional movement.