1.Correlation among picky eating levels in preschool children, parenting self-efficacy and parenting stress
YANG Jing, LIU Qian, YIN Xia, GU Ling, ZHU Jie
Chinese Journal of School Health 2025;46(5):681-684
Objective:
To explore the correlation among picky eating levels in preschool children, parental self-efficacy and parenting stress.
Methods:
A convenience sampling method was employed to conduct an electronic questionnaire survey among 459 children aged 3-6 years and their parents from five kindergartens in Urumqi in November 2023. The survey included a general information questionnaire, the Children s Eating Behavior Questionnaire (CEBQ), the Parenting Sense of Competence Scale (PSOC), and the Parenting Stress Index-Short Form (PSI-SF). The Mann-Whitney U-test was used for twogroup comparisons, and the Kruskal-Wallis H-test was applied for multi-group comparisons. Spearman correlation analysis was conducted to examine the relationships between children s picky eating levels and parenting selfefficacy as well as parenting stress.
Results:
The picky eating score of preschool children was 10.00 (4.00), and the parenting self-efficacy score was 58.00 (12.00), both indicating a moderate level. The parenting stress score was 75.00 (16.00), reflecting a moderately low level. Spearman correlation analysis showed that children s picky eating levels were negatively correlated with the total score of parenting self-efficacy ( r =-0.28) and positively correlated with the total score of parenting stress( r =0.25)( P <0.01).
Conclusions
Picky eating levels of preschool children are closely associated with parenting self-efficacy and parenting stress. Picky eating behaviors in children can be reduced by implementing various effective measures to enhance parenting self-efficacy and alleviate parenting stress.
2.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
3.CFAP300 loss-of-function variant causes primary ciliary dyskinesia and male infertility via disrupting sperm flagellar assembly and acrosome formation.
Hua-Yan YIN ; Yu-Qi ZHOU ; Qun-Shan SHEN ; Zi-Wen CHEN ; Jie-Ru LI ; Huan WU ; Yun-Xia CAO ; Rui GUO ; Bing SONG
Asian Journal of Andrology 2025;27(6):743-750
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired motility of cilia and flagella. Mutations in cilia- and flagella-associated protein 300 ( CFAP300 ) are associated with human PCD and male infertility; however, the underlying pathogenic mechanisms remain poorly understood. In a consanguineous Chinese family, we identified a homozygous CFAP300 loss-of-function variant (c.304delC) in a proband presenting with classical PCD symptoms and severe sperm abnormalities, including dynein arm deficiency and acrosomal malformation, as confirmed by transmission electron microscopy (TEM). Histological analysis revealed multiple morphological abnormalities of the sperm flagella in CFAP300 -mutant individual, whereas immunofluorescence demonstrated markedly reduced CFAP300 expression in the spermatozoa of the proband. Furthermore, tandem mass tag (TMT)-based quantitative proteomics showed that the CFAP300 mutation reduced key spermatogenesis proteins (e.g., sperm flagellar 2 [SPEF2], solute carrier family 25 member 31 [SLC25A31], and A-kinase anchoring protein 3 [AKAP3]) and mitochondrial ATP synthesis factors (e.g., SLC25A31, cation channel sperm-associated 3 [CATSPER3]). It also triggered abnormal increases in autophagy-related proteins and signaling mediator phosphorylation. These molecular alterations are likely to contribute to progressive deterioration of sperm ultrastructure and function. Notably, successful pregnancy was achieved via intracytoplasmic sperm injection (ICSI) using the proband's sperm. Overall, this study expands the known CFAP300 mutational spectrum and offers novel mechanistic insights into its role in spermatogenesis.
Humans
;
Male
;
Infertility, Male/pathology*
;
Acrosome/pathology*
;
Sperm Tail/pathology*
;
Pedigree
;
Spermatozoa
;
Adult
;
Loss of Function Mutation
;
Ciliary Motility Disorders/genetics*
;
Spermatogenesis/genetics*
;
Female
4.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
5.Performance assessment of computed tomographic angiography fractional flow reserve using deep learning: SMART trial summary.
Wei ZHANG ; You-Bing YIN ; Zhi-Qiang WANG ; Ying-Xin ZHAO ; Dong-Mei SHI ; Yong-He GUO ; Zhi-Ming ZHOU ; Zhi-Jian WANG ; Shi-Wei YANG ; De-An JIA ; Li-Xia YANG ; Yu-Jie ZHOU
Journal of Geriatric Cardiology 2025;22(9):793-801
BACKGROUND:
Non-invasive computed tomography angiography (CTA)-based fractional flow reserve (CT-FFR) could become a gatekeeper to invasive coronary angiography. Deep learning (DL)-based CT-FFR has shown promise when compared to invasive FFR. To evaluate the performance of a DL-based CT-FFR technique, DeepVessel FFR (DVFFR).
METHODS:
This retrospective study was designed for iScheMia Assessment based on a Retrospective, single-center Trial of CT-FFR (SMART). Patients suspected of stable coronary artery disease (CAD) and undergoing both CTA and invasive FFR examinations were consecutively selected from the Beijing Anzhen Hospital between January 1, 2016 to December 30, 2018. FFR obtained during invasive coronary angiography was used as the reference standard. DVFFR was calculated blindly using a DL-based CT-FFR approach that utilized the complete tree structure of the coronary arteries.
RESULTS:
Three hundred and thirty nine patients (60.5 ±10.0 years and 209 men) and 414 vessels with direct invasive FFR were included in the analysis. At per-vessel level, sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of DVFFR were 94.7%, 88.6%, 90.8%, 82.7%, and 96.7%, respectively. The area under the receiver operating characteristics curve (AUC) was 0.95 for DVFFR and 0.56 for CTA-based assessment with a significant difference (P < 0.0001). At patient level, sensitivity, specificity, accuracy, PPV and NPV of DVFFR were 93.8%, 88.0%, 90.3%, 83.0%, and 95.8%, respectively. The computation for DVFFR was fast with the average time of 22.5 ± 1.9 s.
CONCLUSIONS
The results demonstrate that DVFFR was able to evaluate lesion hemodynamic significance accurately and effectively with improved diagnostic performance over CTA alone. Coronary artery disease (CAD) is a critical disease in which coronary artery luminal narrowing may result in myocardial ischemia. Early and effective assessment of myocardial ischemia is essential for optimal treatment planning so as to improve the quality of life and reduce medical costs.
6.Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats.
Jie-Qiong ZENG ; Hui-Fen ZHOU ; Hai-Xia DU ; Yu-Jia WU ; Qian-Ping MAO ; Jun-Jun YIN ; Hai-Tong WAN ; Jie-Hong YANG
Chinese journal of integrative medicine 2025;31(3):251-260
OBJECTIVE:
To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats.
METHODS:
A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively.
RESULTS:
Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01).
CONCLUSION
THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Animals
;
Diabetic Cardiomyopathies/physiopathology*
;
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats, Sprague-Dawley
;
Myocardium/metabolism*
;
Fibrosis
;
Male
;
Capsules
;
Hypoglycemic Agents/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Rats
;
Diabetes Mellitus, Experimental/drug therapy*
7.Association between ABO Blood Types and the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study.
Shuang Hua XIE ; Shuang Ying LI ; Shao Fei SU ; En Jie ZHANG ; Shen GAO ; Yue ZHANG ; Jian Hui LIU ; Min Hui HU ; Rui Xia LIU ; Wen Tao YUE ; Cheng Hong YIN
Biomedical and Environmental Sciences 2025;38(6):678-692
OBJECTIVE:
To investigate the association between ABO blood types and gestational diabetes mellitus (GDM) risk.
METHODS:
A prospective birth cohort study was conducted. ABO blood types were determined using the slide method. GDM diagnosis was based on a 75-g, 2-h oral glucose tolerance test (OGTT) according to the criteria of the International Association of Diabetes and Pregnancy Study Groups. Logistic regression was applied to calculate the odds ratios ( ORs) and 95% confidence intervals ( CIs) between ABO blood types and GDM risk.
RESULTS:
A total of 30,740 pregnant women with a mean age of 31.81 years were enrolled in this study. The ABO blood types distribution was: type O (30.99%), type A (26.58%), type B (32.20%), and type AB (10.23%). GDM was identified in 14.44% of participants. Using blood type O as a reference, GDM risk was not significantly higher for types A ( OR = 1.05) or B ( OR = 1.04). However, women with type AB had a 19% increased risk of GDM ( OR = 1.19, 95% CI = 1.05-1.34; P < 0.05), even after adjusting for various factors. This increased risk for type AB was consistent across subgroup and sensitivity analyses.
CONCLUSION
The ABO blood types may influence GDM risk, with type AB associated with a higher risk. Incorporating it-either as a single risk factor or in combination with other known factors-could help identify individuals at risk for GDM before or during early pregnancy.
Humans
;
Female
;
Pregnancy
;
Diabetes, Gestational/etiology*
;
ABO Blood-Group System
;
Adult
;
Prospective Studies
;
Risk Factors
;
Young Adult
8.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
9.Basic and Clinical Research of Fecal Microbiota Transplantation in The Treatment of Central Nervous System Diseases
Hong-Ru LI ; Cai-Hong LEI ; Shu-Wen LIU ; Yuan YANG ; Hai-Xia CHEN ; Run ZHANG ; Yin-Jie CUI ; Zhong-Zheng LI
Progress in Biochemistry and Biophysics 2024;51(11):2921-2935
As a microbial therapy method, fecal microbiota transplantation (FMT) has attracted the attention of researchers in recent years. As one of the most direct and effective methods to improve gut microbiota, FMT achieves therapeutic benefits by transplanting functional gut microbiota from healthy human feces into the intestines of patients to reconstruct new gut microbiota. FMT has been proven to be an effective treatment for gastrointestinal diseases such as Clostridium difficile infection, irritable bowel syndrome, and inflammatory bowel disease. In addition, the clinical and basic research of FMT outside the gastrointestinal system is also emerging. It is worth noting that there is bidirectional communication between the gut microbial community and the central nervous system (CNS) through the gut-brain axis. Some gut bacteria can synthesize and release neurotransmitters such as glutamate, gamma-aminobutyric acid (GABA) and dopamine. Imbalanced gut microbiota may interfere with the normal levels of these neurotransmitters, thereby affecting brain function. Gut microbiota can also produce metabolites that may cross the blood-brain barrier and affect CNS function. FMT may affect the occurrence and development of CNS and its related diseases by reshaping the gut microbiota of patients through a variety of pathways such as nerves, immunity, and metabolites. This article introduces the development of FMT and the research status of FMT in China, and reviews the basic and clinical research of FMT in neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), neurotraumatic diseases (spinal cord injury, traumatic brain injury) and stroke from the characteristics of three types of nervous system diseases, the characteristics of intestinal flora, and the therapeutic effect and mechanism of fecal microbiota transplantation, summarize the common mechanism of fecal microbiota transplantation in the treatment of CNS diseases and the therapeutic targets. We found that the common mechanisms of FMT in the treatment of nervous system diseases may include the following 3 categories through summary and analysis. (1) Gut microbiota metabolites, such as SCFAs, TMAO and LPS. (2) Inflammatory factors and immune inflammatory pathways such as TLR-MyD88 and NF-κB. (3) Neurotransmitter 5-HT. In the process of reviewing the studies, we found the following problems. (1) In basic researches on the relationship between FMT and CNS diseases, there are relatively few studies involving the autonomic nervous system pathway. (2) Clinical trial studies have shown that FMT improves the severity of patients’ symptoms and may be a promising treatment for a variety of neurological diseases. (3) The improvement of clinical efficacy is closely related to the choice of donor, especially emphasizing that FMT from healthy and young donors may be the key to the improvement of neurological diseases. However, there are common challenges in current research on FMT, such as the scientific and rigorous design of FMT clinical trials, including whether antibiotics are used before transplantation or different antibiotics are used, as well as different FMT processes, different donors, different functional analysis methods of gut microbiota, and the duration of FMT effect. Besides, the safety of FMT should be better elucidated, especially weighing the relationship between the therapeutic benefits and potential risks of FMT carefully. It is worth mentioning that the clinical development of FMT even exceeds its basic research. Science and TIME rated FMT as one of the top 10 breakthroughs in the field of biomedicine in 2013. FMT therapy has great potential in the treatment of nervous system diseases, is expected to open up a new situation in the medical field, and may become an innovative weapon in the medical field.
10.Research status of miR-135b in malignant tumors of the digestive system
Yu-Jie HE ; Jia CHEN ; Qi XIA ; Wen CHEN ; Pei-Hao YIN
The Chinese Journal of Clinical Pharmacology 2024;40(18):2747-2751
MicroRNAs(microRNAs,miRNAs)are a class of endogenous,single-stranded,short and highly conserved non-coding RNAs.miR-135b,as a member of miRNAs,is aberrantly expressed in digestive malignancies.Its mechanism of action involves a variety of target genes and participates in tumorigenesis and development by regulating cell proliferation,metastasis,and drug resistance.Clinical studies have shown that high expression of miR-135b is associated with poor patient prognosis and decreased survival.As a potential biomarker,miR-135b may be useful in the diagnosis,prognostic assessment,and therapeutic monitoring of malignant tumors of the digestive system.Therefore,miR-135b and its regulated pathways may become future therapeutic targets and provide new ideas for the treatment and management of tumor patients.


Result Analysis
Print
Save
E-mail