1.Therapeutic mechanism of Shenbing Decoction Ⅲ for renal fibrosis in chronic kidney disease: a study with network pharmacology, molecular docking and validation in rats.
Guanfeng LUO ; Huaxi LIU ; Bei XIE ; Yijian DENG ; Penghui XIE ; Xiaoshan ZHAO ; Xiaomin SUN
Journal of Southern Medical University 2023;43(6):924-934
OBJECTIVE:
To observe the effect of Shenbing Decoction Ⅲ for improving renal function and pathology in rats with 5/6 nephrectomy and analyze its therapeutic mechanism for renal fibrosis in chronic kidney disease using network pharmacology combined with molecular docking.
METHODS:
Forty male SD rats were randomized into two groups to receive two-staged 5/6 nephrectomy (n=30) or sham operation (n=10), and 2 weeks after the final operation, serum creatinine level of the rats was measured. The rats with nephrectomy were further randomized into Shenbing Decoction Ⅲ group, losartan group and model group for daily treatment with the corresponding drugs via gavage starting at 1 week after 5/6 nephrectomy. After 16 weeks of treatment, serum creatinine and urea nitrogen levels of the rats were measured, and HE staining and Western blotting were used to examine the changes in renal pathology and fibrosis-related factors. Network pharmacology combined with molecular docking study was performed to explore the therapeutic mechanism Shenbing Decoction Ⅲ against renal fibrosis in chronic kidney disease, and Western blotting was used to verify the expressions of the core targets.
RESULTS:
Compared with those in the model group, the rats receiving 5/6 nephrectomy and Shenbing Decoction Ⅲ treatment showed significantly reduced serum creatinine and urea nitrogen levels, lessened renal pathologies, and improvement of the changes in epithelial mesenchymal transition-related proteins. Network pharmacological analysis showed that the main active ingredients of Shenbing Decoction Ⅲ were acacetin, apigenin, eupatilin, quercetin, kaempferol and luteolin, and the key targets included STAT3, SRC, CTNNB1, PIK3R1 and AKT1. Molecular docking study revealed that the active ingredients of Shenbing Decoction Ⅲ had good binding activity to the key targets. Western blotting showed that in rats with 5/6 nephrectomy, treatment with Shenbing Decoction Ⅲ obviously restored the protein expression of STAT3, PI3K, and AKT in renal tissue.
CONCLUSION
Shenbing Decoction Ⅲ can reduce renal injury induced by 5/6 nephrectomy in rats, and its therapeutic effects are mediated possibly by its main pharmacologically active ingredients that alleviate renal fibrosis via modulating multiple targets including STAT3, PIK3R1, and AKT1.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Molecular Docking Simulation
;
Network Pharmacology
;
Creatinine
;
Renal Insufficiency, Chronic/drug therapy*
;
Fibrosis
;
Urea
2.Mechanism of Ⅲ in the treatment of proteinuria in chronic kidney disease: a network pharmacology-based study.
Huaxi LIU ; Zhihao LÜ ; Chunyang TIAN ; Wenkun OUYANG ; Yifan XIONG ; Yanting YOU ; Liqian CHEN ; Yijian DENG ; Xiaoshan ZHAO ; Xiaomin SUN
Journal of Southern Medical University 2019;39(2):227-234
OBJECTIVE:
To identify the main active components in Ⅲ and their targets and explore the mechanism by which Ⅲ alleviates proteinuria in chronic kidney disease (CKD) based on network pharmacology.
METHODS:
The active components of Ⅲ and their potential targets, along with the oral bioavailability and drug-like properties of each component were searched in the TCMSP database. The proteinuria-related targets were searched in the GeneCards database. The active component-target network was constructed using Cytoscape software, and the acquired information of the targets from ClueGO was used for enrichment analysis of the gene pathways.
RESULTS:
A total of 102 active components were identified from Ⅲ. These active components acted on 126 targets, among which 69 were related to proteinuria. Enrichment analysis revealed fluid shear stress- and atherosclerosisrelated pathways as the highly significant pathways in proteinuria associated with CKD.
CONCLUSIONS
We preliminarily validated the prescription of Ⅲ and obtained scientific evidence that supported its use for treatment of proteinuria in CKD. The findings in this study provide a theoretical basis for further study of the mechanism of Ⅲ in the treatment of proteinuria in CKD.
Biological Availability
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacokinetics
;
therapeutic use
;
Humans
;
Proteinuria
;
drug therapy
;
etiology
;
metabolism
;
Renal Insufficiency, Chronic
;
complications
;
metabolism