1.Study on accumulation of polysaccharide and steroid components in Polyporus umbellatus infected by Armillaria spp.
Ming-shu YANG ; Yi-fei YIN ; Juan CHEN ; Bing LI ; Meng-yan HOU ; Chun-yan LENG ; Yong-mei XING ; Shun-xing GUO
Acta Pharmaceutica Sinica 2025;60(1):232-238
In view of the few studies on the influence of
2.Research Progress and Application of Interfacing of Supercritical Fluid Chromatography and Mass Spectrometry
Xue-Ge YANG ; Huai-Yi CHEN ; Xing-Yu PAN ; Jin-Lei YANG ; Fei TANG ; Si-Chun ZHANG
Chinese Journal of Analytical Chemistry 2024;52(10):1465-1474
In the past few decades,supercritical fluid chromatography(SFC)as a supplement to liquid chromatography(LC)separation technology has attracted people's interest,especially in the combination of SFC and mass spectrometry(MS),which has shown important application prospects in metabolomics,lipidomics,and other fields.Compared to the interface of LC-MS,the interface of SFC-MS presents some unique challenges that require special solutions to be designed.This article categorizes and summarizes the existing interfaces used for SFC-MS,focuses on the impact of different interface designs on detection performance,provides the applicable characteristics of different types of interfaces,and finally briefly introduces the application progress of SFC-MS in different fields.
3.Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cra-nial Sutures in Northern Chinese Han Adults
Xuan WEI ; Yu-Shan CHEN ; Jie DING ; Chang-Xing SONG ; Jun-Jing WANG ; Zhao PENG ; Zhen-Hua DENG ; Xu YI ; Fei FAN
Journal of Forensic Medicine 2024;40(2):128-134,142
Objective To establish age estimation models of northern Chinese Han adults using cranial suture images obtained by CT and multiplanar reformation(MPR),and to explore the applicability of cranial suture closure rule in age estimation of northern Chinese Han population.Methods The head CT samples of 132 northern Chinese Han adults aged 29-80 years were retrospectively collected.Volume reconstruction(VR)and MPR were performed on the skull,and 160 cranial suture tomography images were generated for each sample.Then the MPR images of cranial sutures were scored according to the closure grading criteria,and the mean closure grades of sagittal suture,coronal sutures(both left and right)and lambdoid sutures(both left and right)were calculated respectively.Finally taking the above grades as independent variables,the linear regression model and four machine learning models for age estimation(gradient boosting regression,support vector regression,decision tree regression and Bayesian ridge regression)were established for northern Chinese Han adults age estimation.The accu-racy of each model was evaluated.Results Each cranial suture closure grade was positively correlated with age and the correlation of sagittal suture was the highest.All four machine learning models had higher age estimation accuracy than linear regression model.The support vector regression model had the highest accuracy among the machine learning models with a mean absolute error of 9.542 years.Conclusion The combination of skull CT-MPR and machine learning model can be used for age esti-mation in northern Chinese Han adults,but it is still necessary to combine with other adult age estima-tion indicators in forensic practice.
4.Development and prospects of predicting drug polymorphs technology
Mei GUO ; Wen-xing DING ; Bo PENG ; Jin-feng LIU ; Yi-fei SU ; Bin ZHU ; Guo-bin REN
Acta Pharmaceutica Sinica 2024;59(1):76-83
Most chemical medicines have polymorphs. The difference of medicine polymorphs in physicochemical properties directly affects the stability, efficacy, and safety of solid medicine products. Polymorphs is incomparably important to pharmaceutical chemistry, manufacturing, and control. Meantime polymorphs is a key factor for the quality of high-end drug and formulations. Polymorph prediction technology can effectively guide screening of trial experiments, and reduce the risk of missing stable crystal form in the traditional experiment. Polymorph prediction technology was firstly based on theoretical calculations such as quantum mechanics and computational chemistry, and then was developed by the key technology of machine learning using the artificial intelligence. Nowadays, the popular trend is to combine the advantages of theoretical calculation and machine learning to jointly predict crystal structure. Recently, predicting medicine polymorphs has still been a challenging problem. It is expected to learn from and integrate existing technologies to predict medicine polymorphs more accurately and efficiently.
5.Application progress of radiolabeling strategies in human mass balance studies
Yi-fei HE ; Yuan-dong ZHENG ; Da-fang ZHONG ; Xing-xing DIAO
Acta Pharmaceutica Sinica 2024;59(9):2470-2483
Human mass balance study is a pivotal research in the field of clinical pharmacology, aiming at elucidating the metabolic and excretion pathways of drugs in humans. Currently, human mass balance studies predominantly employ radiolabeling techniques. Recently, both the U.S. Food and Drug Administration (FDA) and the Center for Drug Evaluation (CDE) of the China National Medical Products Administration (NMPA) issued related research drafts and guidelines to encourage and guide the pharmaceutical industry to conduct research in compliance with established standards. The selection of radiolabeling sites is crucial for obtaining critical information on drug metabolism. However,
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data.
Cong LI ; Xiao-Yan ZHANG ; Yun-Hong WU ; Xiao-Lei YANG ; Hua-Rong YU ; Hong-Bo JIN ; Ying-Bo LI ; Zhao-Hui ZHU ; Rui LIU ; Na LIU ; Yi XIE ; Lin-Li LYU ; Xin-Hong ZHU ; Hong TANG ; Hong-Fang LI ; Hong-Li LI ; Xiang-Jun ZENG ; Zai-Xing CHEN ; Xiao-Fang FAN ; Yan WANG ; Zhi-Juan WU ; Zun-Qiu WU ; Ya-Qun GUAN ; Ming-Ming XUE ; Bin LUO ; Ai-Mei WANG ; Xin-Wang YANG ; Ying YING ; Xiu-Hong YANG ; Xin-Zhong HUANG ; Ming-Fei LANG ; Shi-Min CHEN ; Huan-Huan ZHANG ; Zhong ZHANG ; Wu HUANG ; Guo-Biao XU ; Jia-Qi LIU ; Tao SONG ; Jing XIAO ; Yun-Long XIA ; You-Fei GUAN ; Liang ZHU
Acta Physiologica Sinica 2024;76(6):937-942
As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity. This consensus governs every facet of medical data handling through artificial intelligence, encompassing data gathering, processing, storage, transmission, utilization, and sharing. Its purpose is to ensure the management of medical data adheres to ethical standards and legal requirements, while safeguarding patient privacy and data security. Concurrently, the principles of compliance with the law, patient privacy respect, patient interest protection, and safety and reliability are underscored. Key issues such as informed consent, data usage, intellectual property protection, conflict of interest, and benefit sharing are examined in depth. The enactment of this expert consensus is intended to foster the profound integration and sustainable advancement of artificial intelligence within the medical domain, while simultaneously ensuring that artificial intelligence adheres strictly to the relevant ethical norms and legal frameworks during the processing of medical data.
Artificial Intelligence/legislation & jurisprudence*
;
Humans
;
Consensus
;
Computer Security/standards*
;
Confidentiality/ethics*
;
Informed Consent/ethics*
8.Efficacy and safety of autologous hematopoietic stem cell transplantation pretreated with Melphalan hydrochloride for injection in the treatment of 125 cases of multiple myeloma.
Wen Yang HUANG ; Wei LIU ; Hui Min LIU ; Yan XU ; Qi WANG ; Chen Xing DU ; Wen Jie XIONG ; Wei Wei SUI ; Fei TIAN ; Jing WANG ; Shu Hua YI ; Gang AN ; Lu Gui QIU ; De Hui ZOU
Chinese Journal of Hematology 2023;44(2):148-150
9.The Pathogenic Characteristics of the Initial Three Mpox Cases in Hunan Province, China.
Rong Jiao LIU ; Xing Yu XIANG ; Zi Xiang HE ; Qian Lai SUN ; Fu Qiang LIU ; Shuai Feng ZHOU ; Yi Wei HUANG ; Fang Cai LI ; Chao Yang HUANG ; Juan WANG ; Fang Ling HE ; Xin Hua OU ; Shi Kang LI ; Yu Ying LU ; Fan ZHANG ; Liang CAI ; Hai Ling MA ; Zhi Fei ZHAN
Biomedical and Environmental Sciences 2023;36(12):1167-1170
10.Research on dynamic on-line monitoring method of moisture attribute in three honey-processed Chinese herbal slice based on in-situ general model
Han ZHANG ; Wen-zhe WANG ; Xiao-yan HU ; Jing WANG ; Yan-yu HAN ; Xiao-meng WANG ; Xiao-meng ZHANG ; Xin-yu GUO ; Xing-yue HUAN ; Jing ZHAO ; Nan LI ; Yi-fei WANG ; Zhi-sheng WU
Acta Pharmaceutica Sinica 2023;58(10):2890-2899
Aiming at the hysteresis and destructiveness of off-line static detection of critical quality attribute of the moisture content of the raw material unit of the traditional Chinese medicine manufacturing process, honey-processed

Result Analysis
Print
Save
E-mail