1.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
4.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
9.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
10.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.

Result Analysis
Print
Save
E-mail