1.Interpretation and thoughts on the formulation and revision of the standards for exogenous harmful residues in traditional Chinese medicinal materials in the Chinese Pharmacopoeia 2025 Edition
WANG Ying ; SHEN Mingrui ; LIU Yuanxi ; ZUO Tiantian ; WANG Dandan ; HE Yi ; CHENG Xianlong ; JIN Hongyu ; LIU Yongli ; WEI Feng ; MA Shuangcheng
Drug Standards of China 2025;26(1):083-092
As people’s attention to health continues to increase, the market demand for traditional Chinese medicine (TCM) is growing steadily. The quality and safety of Chinese medicinal materials have attracted unprecedented social attention. In particular, the issue of exogenous harmful residue pollution in TCM has become a hot topic of concern for both regulatory authorities and society. The Chinese Pharmacopoeia 2025 Edition further refines the detection methods and limit standards for exogenous harmful residues in TCM. This not only reflects China’s high-level emphasis on the quality and safety of TCM but also demonstrates the continuous progress made by China in the field of TCM safety supervision. Basis on this study, by systematically reviewing the development history of the detection standards for exogenous harmful residues in TCM and analyzing the revisions and updates of these detection standards in the Chinese Pharmacopoeia 2025 Edition, deeply explores the key points of the changes in the monitoring standards for exogenous harmful residues in TCM in the Chinese Pharmacopoeia 2025 Edition. Moreover, it interprets the future development directions of the detection of exogenous residues in TCM, aiming to provide a reference for the formulation of TCM safety supervision policies.
2.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
3.Spicy food consumption and risk of vascular disease: Evidence from a large-scale Chinese prospective cohort of 0.5 million people.
Dongfang YOU ; Dianjianyi SUN ; Ziyu ZHAO ; Mingyu SONG ; Lulu PAN ; Yaqian WU ; Yingdan TANG ; Mengyi LU ; Fang SHAO ; Sipeng SHEN ; Jianling BAI ; Honggang YI ; Ruyang ZHANG ; Yongyue WEI ; Hongxia MA ; Hongyang XU ; Canqing YU ; Jun LV ; Pei PEI ; Ling YANG ; Yiping CHEN ; Zhengming CHEN ; Hongbing SHEN ; Feng CHEN ; Yang ZHAO ; Liming LI
Chinese Medical Journal 2025;138(14):1696-1704
BACKGROUND:
Spicy food consumption has been reported to be inversely associated with mortality from multiple diseases. However, the effect of spicy food intake on the incidence of vascular diseases in the Chinese population remains unclear. This study was conducted to explore this association.
METHODS:
This study was performed using the large-scale China Kadoorie Biobank (CKB) prospective cohort of 486,335 participants. The primary outcomes were vascular disease, ischemic heart disease (IHD), major coronary events (MCEs), cerebrovascular disease, stroke, and non-stroke cerebrovascular disease. A Cox proportional hazards regression model was used to assess the association between spicy food consumption and incident vascular diseases. Subgroup analysis was also performed to evaluate the heterogeneity of the association between spicy food consumption and the risk of vascular disease stratified by several basic characteristics. In addition, the joint effects of spicy food consumption and the healthy lifestyle score on the risk of vascular disease were also evaluated, and sensitivity analyses were performed to assess the reliability of the association results.
RESULTS:
During a median follow-up time of 12.1 years, a total of 136,125 patients with vascular disease, 46,689 patients with IHD, 10,097 patients with MCEs, 80,114 patients with cerebrovascular disease, 56,726 patients with stroke, and 40,098 patients with non-stroke cerebrovascular disease were identified. Participants who consumed spicy food 1-2 days/week (hazard ratio [HR] = 0.95, 95% confidence interval [95% CI] = [0.93, 0.97], P <0.001), 3-5 days/week (HR = 0.96, 95% CI = [0.94, 0.99], P = 0.003), and 6-7 days/week (HR = 0.97, 95% CI = [0.95, 0.99], P = 0.002) had a significantly lower risk of vascular disease than those who consumed spicy food less than once a week ( Ptrend <0.001), especially in those who were younger and living in rural areas. Notably, the disease-based subgroup analysis indicated that the inverse associations remained in IHD ( Ptrend = 0.011) and MCEs ( Ptrend = 0.002) risk. Intriguingly, there was an interaction effect between spicy food consumption and the healthy lifestyle score on the risk of IHD ( Pinteraction = 0.037).
CONCLUSIONS
Our findings support an inverse association between spicy food consumption and vascular disease in the Chinese population, which may provide additional dietary guidance for the prevention of vascular diseases.
Humans
;
Male
;
Female
;
Prospective Studies
;
Middle Aged
;
Aged
;
Vascular Diseases/etiology*
;
Risk Factors
;
China/epidemiology*
;
Adult
;
Proportional Hazards Models
;
Cerebrovascular Disorders/epidemiology*
;
East Asian People
4.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
5.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
6.Era value and new directions of traditional Chinese medicine in preventing and treating osteoporosis from perspective of "bone health program".
Yi-Li ZHANG ; Chuan-Rui SUN ; Kai SUN ; Ai-Li XU ; Hao SHEN ; He YIN ; Ling-Hui LI ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):569-574
Facing the requirements of promoting the healthy China initiative and improving people's health, the "bone health program" was proposed in 2024. In-depth development of a traditional Chinese medicine(TCM) prevention and control system is of strategic significance to the implementation of the "bone health program". Focusing on osteoporosis(OP), a representative disease affecting people's bone health, this paper concludes that accelerating the research on the prevention and control of OP by TCM is conducive to enhancing the knowledge and awareness of OP among the public, and it is beneficial to revealing the evolutionary pattern of OP and improving the understanding and management of this disease. Additionally, it can provide an overall framework for and strengthen the systematicity and completeness of the research on the prevention and treatment of OP by TCM. Meanwhile, it can help to explore new research paradigms and optimize the existing research model, so as to promote innovative breakthroughs in the prevention and treatment of bone health-related diseases by TCM. Under the overall layout of the "bone health program", importance should be attached to the early prevention and the innovation of very early diagnosis and intervention of OP. Emphasis should be put on the discovery of the target network of disease and treatment mechanism for revealing the core pathogenesis of OP and the therapeutic mechanism of TCM. In addition to local lesions of the bone and its clinical outcomes, attention should be paid to the development of multiple metabolic complications. The fusion of advanced interdisciplinary technologies should be promoted for OP and its complications, and thus a research and development system based on clinical application scenarios and driven by big data can be built. The measures above will facilitate the progress in the prevention and treatment of OP and other bone diseases by TCM and provide new momentum for enriching and deepening the research connotation of the "bone health program".
Osteoporosis/therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
China
;
Bone and Bones/drug effects*
7.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
8.Development of oral preparations of poorly soluble drugs based on polymer supersaturated self-nanoemulsifying drug delivery technology.
Xu-Long CHEN ; Jiang-Wen SHEN ; Wei-Wei ZHA ; Jian-Yun YI ; Lin LI ; Zhang-Ting LAI ; Zheng-Gen LIAO ; Ye ZHU ; Yue-Er CHENG ; Cheng LI
China Journal of Chinese Materia Medica 2025;50(16):4471-4482
Poor water solubility is the primary obstacle preventing the development of many pharmacologically active compounds into oral preparations. Self-nanoemulsifying drug delivery systems(SNEDDS) have become a widely used strategy to enhance the oral bioavailability of poorly soluble drugs by inducing a supersaturated state, thereby improving their apparent solubility and dissolution rate. However, the supersaturated solutions formed in SNEDDS are thermodynamically unstable systems with solubility levels exceeding the crystalline equilibrium solubility, making them prone to drug precipitation in the gastrointestinal tract and ultimately hindering drug absorption. Therefore, maintaining a stable supersaturated state is crucial for the effective delivery of poorly soluble drugs. Incorporating polymers as precipitation inhibitors(PPIs) into the formulation of supersaturated self-nanoemulsifying drug delivery systems(S-SNEDDS) can inhibit drug aggregation and crystallization, thus maintaining a stable supersaturated state. This has emerged as a novel preparation strategy and a key focus in SNEDDS research. This review explores the preparation design of SNEDDS and the technical challenges involved, with a particular focus on polymer-based S-SNEDDS for enhancing the solubility and oral bioavailability of poorly soluble drugs. It further elucidates the mechanisms by which polymers participate in transmembrane transport, summarizes the principles by which polymers sustain a supersaturated state, and discusses strategies for enhancing drug absorption. Altogether, this review provides a structured framework for the development of S-SNEDDS preparations with stable quality and reduced development risk, and offers a theoretical reference for the application of S-SNEDDS technology in improving the oral bioavailability of poorly soluble drugs.
Solubility
;
Administration, Oral
;
Polymers/chemistry*
;
Drug Delivery Systems/methods*
;
Humans
;
Emulsions/chemistry*
;
Biological Availability
;
Animals
;
Pharmaceutical Preparations/administration & dosage*
9.Regulation of JAK2/STAT3 signaling pathway by polydatin in the treatment of hormone-induced femoral head necrosis in rats.
Xiang-Jun YANG ; Cong-Yue WANG ; Xi-Lin XU ; Hai HU ; Yi-Wei SHEN ; Xiao-Feng ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(2):195-203
OBJECTIVE:
To explore the therapeutic effect of polygonum cuspidatum glycoside on steroid-induced osteonecrosis of the femoral head(SONFH) in rats and its potential mechanism of protecting bone tissue by regulating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway(JAK2/STAT3).
METHODS:
Fifty male SD rats were randomly divided into control group, model group, low-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-L), high-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-H), and polygonum cuspidatum glycoside-H+Colivelin (JAK2/STAT3 pathway activator) group. SONFH model was induced by lipopolysaccharide and dexamethasone. The treatment groups were given polygonum cuspidatum glycoside orally(polygonum cuspidatum glycoside-L 10 mg·kg-1, polygonum cuspidatum glycoside-H 20 mg·kg-1, and the polygonum cuspidatum glycoside-H+Colivelin group was injected with Colivelin (1 mg·kg-1) intraperitoneally once a day, while the control and model groups were given an equal volume of saline for 6 weeks. The observed indicators included serum calcium(Ca), serum phosphorus (P), alkaline phosphatase, and transforming growth factor β1(TGF-β1) levels, micro-CT scanning, hematoxylin-eosin staining, and Western blot detection of JAK2/STAT3 signaling pathway and osteogenic differentiation marker genes, including Runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP2), and osteopontin (OPN) protein expression.
RESULTS:
Compared with the model group, the trabecular bone area percentage in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups was significantly increased, and the empty lacunar rate was significantly decreased (P<0.05). Micro-CT analysis showed that the bone volume fraction, trabecular number, and thickness increased, and the trabecular separation decreased in the polygonum cuspidatum glycoside-treated groups(P<0.05). Serum biochemical tests found that the serum Ca and P concentrations in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups were restored, the alkaline phosphatase levels decreased, and the transforming growth factor β1 levels increased (P<0.05). Western blot analysis showed that polygonum cuspidatum glycoside significantly inhibited the activation of the JAK2/STAT3 signaling pathway in the model group and promoted the expression of osteogenic differentiation marker genes such as Runx2, BMP2, and OPN (P<0.05). Compared with the polygonum cuspidatum glycoside-H group, the improvements in the polygonum cuspidatum glycoside-H+Colivelin group were somewhat weakened, indicating the importance of the JAK2/STAT3 signaling pathway in the action of polygonum cuspidatum glycoside.
CONCLUSION
polygonum cuspidatum glycoside promotes osteogenic differentiation, improves bone microstructure, and has significant therapeutic effects on rat SONFH by regulating the JAK2/STAT3 signaling pathway.
Animals
;
Male
;
Janus Kinase 2/physiology*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Glucosides/pharmacology*
;
STAT3 Transcription Factor/genetics*
;
Femur Head Necrosis/chemically induced*
;
Stilbenes/pharmacology*
10.Establishment of a Bortezomib-Resistant Multiple Myeloma Xenotransplantation Mouse Model by Transplanting Primary Cells from Patients.
Yan-Hua YUE ; Yi-Fang ZHOU ; Ying-Jie MIAO ; Yang CAO ; Fei WANG ; Yue LIU ; Feng LI ; Yang-Ling SHEN ; Yan-Ting GUO ; Yu-Hui HUANG ; Wei-Ying GU
Journal of Experimental Hematology 2025;33(1):133-141
OBJECTIVE:
To explore the construction method of a resistant multiple myeloma (MM) patient-derived xenotransplantation (PDX) model.
METHODS:
1.0×107 MM patient-derived mononuclear cells (MNCs), 2.0×106 MM.1S cells and 2.0×106 NCI-H929 cells were respectively subcutaneously inoculated into NOD.CB17-Prkdcscid Il2rgtm1/Bcgen (B-NDG) mice with a volume of 100 μl per mouse to establish mouse model. The morphologic, phenotypic, proliferative and genetic characteristics of PDX tumor were studied by hematoxylin-eosin staining, immunohistochemical staining (IHC), cell cycle analysis, flow cytometry and fluorescence in situ hybridization (FISH). The sensitivity of PDX tumor to bortezomib and anlotinib monotherapy or in combination was investigated through cell proliferation, apoptosis and in vitro and in vivo experiments. The effects of anlotinib therapy on tumor blood vessel and cell apoptosis were analyzed by IHC, TUNEL staining and confocal fluorescence microscope.
RESULTS:
MM PDX model was successfully established by subcutaneously inoculating primary MNCs. The morphologic features of tumor cells from MM PDX model were similar to those of mature plasma cells. MM PDX tumor cells positively expressed CD138 and CD38, which presented 1q21 amplification, deletion of Rb1 and IgH rearrangement, and had a lower proliferative activity than MM cell lines. in vitro, PDX, MM.1S and NCI-H929 cells were treated by bortezomib and anlotinib for 24 hours, respectively. Cell viability assay showed that the IC50 value of bortezomib were 5 716.486, 1.025 and 2.775 nmol/L, and IC50 value of anlotinib were 5 5107.337, 0.706 and 5.13 μmol/L, respectively. Anlotinib treatment increased the apoptosis of MM.1S cells (P < 0.01), but did not affect PDX tumor cells (P >0.05). in vivo, there was no significant difference in PDX tumor growth between bortezomib monotherapy group and control group (P >0.05), while both anlotinib monotherapy and anlotinib combined with bortezomib effectively inhibited PDX tumor growth (both P < 0.05). The vascular perfusion and vascular density of PDX tumor were decreased in anlotinib treatment group (both P < 0.01). The apoptotic cells in anlotinib treatment group were increased compared with those in control group (P < 0.05).
CONCLUSION
Bortezomib-resistant MM PDX model can be successfully established by subcutaneous inoculation of MNCs from MM patients in B-NDG mice. This PDX model, which retains the basic biological characteristics of MM cells, can be used to study the novel therapies.
Animals
;
Bortezomib
;
Humans
;
Multiple Myeloma/pathology*
;
Mice
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Xenograft Model Antitumor Assays
;
Mice, Inbred NOD
;
Disease Models, Animal
;
Cell Proliferation
;
Transplantation, Heterologous

Result Analysis
Print
Save
E-mail