1.A Milestone in Collaboration: The Journal of Chest Surgery Becomes the Joint Official Journal of the Korean Society for Thoracic and Cardiovascular Surgery and the Taiwan Society of Thoracic Surgeons
Mong-Wei LIN ; Yi-Ting YEN ; Shah-Hwa CHOU ; Hsao-Hsun HSU ; Yin-Kai CHAO
Journal of Chest Surgery 2025;58(1):3-4
2.A Milestone in Collaboration: The Journal of Chest Surgery Becomes the Joint Official Journal of the Korean Society for Thoracic and Cardiovascular Surgery and the Taiwan Society of Thoracic Surgeons
Mong-Wei LIN ; Yi-Ting YEN ; Shah-Hwa CHOU ; Hsao-Hsun HSU ; Yin-Kai CHAO
Journal of Chest Surgery 2025;58(1):3-4
3.A Milestone in Collaboration: The Journal of Chest Surgery Becomes the Joint Official Journal of the Korean Society for Thoracic and Cardiovascular Surgery and the Taiwan Society of Thoracic Surgeons
Mong-Wei LIN ; Yi-Ting YEN ; Shah-Hwa CHOU ; Hsao-Hsun HSU ; Yin-Kai CHAO
Journal of Chest Surgery 2025;58(1):3-4
4.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
5.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
6.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
7.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
8.Altered Auditory P300 Performance in Parents with Attention Deficit Hyperactivity Disorder Offspring
Mei Hung CHI ; Ching Lin CHU ; I Hui LEE ; Yi Ting HSIEH ; Ko Chin CHEN ; Po See CHEN ; Yen Kuang YANG
Clinical Psychopharmacology and Neuroscience 2019;17(4):509-516
OBJECTIVE: Altered event-related potential (ERP) performances have been noted in attention deficit hyperactivity disorder (ADHD) patients and reflect neurocognitive dysfunction. Whether these ERP alterations and correlated dysfunctions exist in healthy parents with ADHD offspring is worth exploring. METHODS: Thirteen healthy parents with ADHD offspring and thirteen healthy controls matched for age, sex and years of education were recruited. The auditory oddball paradigm was used to evaluate the P300 wave complex of the ERP, and the Wechsler Adult Intelligence Scale-Revised, Wisconsin Card Sorting Test, and continuous performance test were used to measure neurocognitive performance. RESULTS: Healthy parents with ADHD offspring had significantly longer auditory P300 latency at Fz than control group. However, no significant differences were found in cognitive performance. CONCLUSION: The presence of a subtle alteration in electro-neurophysiological activity without explicit neurocognitive dysfunction suggests potential candidate of biological marker for parents with ADHD offspring.
Adult
;
Attention Deficit Disorder with Hyperactivity
;
Biomarkers
;
Cognition
;
Education
;
Evoked Potentials
;
Humans
;
Intelligence
;
Parents
;
Wisconsin
9.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
10.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.