1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411).
Xue-Hai ZHOU ; Min-Min HUA ; Jia-Nan TANG ; Bang-Guo WU ; Xue-Mei WANG ; Chang-Gen SHI ; Yang YANG ; Jun WU ; Bin WU ; Bao-Li ZHANG ; Yi-Si SUN ; Tian-Cheng ZHANG ; Hui-Juan SHI
Asian Journal of Andrology 2025;27(1):120-128
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Spermatids/metabolism*
;
Spermatogenesis/physiology*
;
Spermatozoa/metabolism*
;
Thioredoxins/genetics*
5.Human Cytomegalovirus Infection and Embryonic Malformations: The Role of the Wnt Signaling Pathway and Management Strategies.
Xiao Mei HAN ; Bao Yi ZHENG ; Zhi Cui LIU ; Jun Bing CHEN ; Shu Ting HUANG ; Lin XIAO ; Dong Feng WANG ; Zhi Jun LIU
Biomedical and Environmental Sciences 2025;38(9):1142-1149
Human cytomegalovirus (HCMV) poses a significant risk of neural damage during pregnancy. As the most prevalent intrauterine infectious agent in low- and middle-income countries, HCMV disrupts the development of neural stem cells, leading to fetal malformations and abnormal structural and physiological functions in the fetal brain. This review summarizes the current understanding of how HCMV infection dysregulates the Wnt signaling pathway to induce fetal malformations and discusses current management strategies.
Humans
;
Cytomegalovirus Infections/virology*
;
Wnt Signaling Pathway
;
Pregnancy
;
Female
;
Cytomegalovirus/physiology*
;
Pregnancy Complications, Infectious/virology*
;
Congenital Abnormalities/virology*
;
Animals
6.Effect of cardiac shock wave therapy on electrocardiogram and myocardial perfusion in coronary artery disease patients
Chun-Mei TIAN ; Jing-Jing ZHENG ; Na JIA ; Lin ZHANG ; Bao-Yi LIU ; Jun-Meng LIU ; Ming LAN ; Bing LIU
Chinese Journal of Interventional Cardiology 2024;32(6):317-323
Objective To explore the effect of cardiac shock wave therapy(CSWT)on ST deviation of electrocardiogram and myocardial perfusion imaging in coronary artery disease(CAD)patients.Methods CAD patients who received CSWT in Cardiology Department of Beijing Hospital from December 2016 to August 2022 were enrolled.Three months of CSWT were conducted with a total of 9 times shock wave treatment.Clinical data,myocardial perfusion imaging data and stress electrocardiogram data were collected.Myocardial perfusion score,electrocardiographic data were compared before and after CSWT.Results A total of 55 patients were finally enrolled.There were 43 male and 12 female patients with an average age of(67.45±8.96)years old.ST deviation on 12 leads of electrocardiogram did not show significant difference before and after CSWT.Myocardial perfusion imaging showed global stress perfusion score(P=0.031)and reverse perfusion score(P=0.024).Global rest ischemia score reduced after CSWT(P=0.034).Target stress perfusion score(P=0.002),target reverse perfusion score(P=0.002),target reverse ischemic area(P=0.001)were improved after CSWT.Conclusions CSWT may not influence ST deviation of electrocardiogram,but may improve myocardial ischemia in CAD patients,
7.Anti-inflammatory effects of acupuncture in the treatment of chronic obstructive pulmonary disease.
Lin-Hong JIANG ; Pei-Jun LI ; Ying-Qi WANG ; Mei-Ling JIANG ; Xiao-Yu HAN ; Yi-Die BAO ; Xin-Liao DENG ; Wei-Bing WU ; Xiao-Dan LIU
Journal of Integrative Medicine 2023;21(6):518-527
Numerous randomised controlled trials have suggested the positive effects of acupuncture on chronic obstructive pulmonary disease (COPD). However, the underlying therapeutic mechanisms of acupuncture for COPD have not been clearly summarized yet. Inflammation is central to the development of COPD. In this review, we elucidate the effects and underlying mechanisms of acupuncture from an anti-inflammatory perspective based on animal studies. Cigarette smoke combined with lipopolysaccharide is often used to establish animal models of COPD. Electroacupuncture can be an effective intervention to improve inflammation in COPD, and Feishu (BL13) and Zusanli (ST36) can be used as basic acupoints in COPD animal models. Different acupuncture types can regulate different types of inflammatory cytokines; meanwhile, different acupuncture types and acupoint options have similar effects on modulating the level of inflammatory cytokines. In particular, acupuncture exerts anti-inflammatory effects by inhibiting the release of inflammatory cells, inflammasomes and inflammatory cytokines. The main underlying mechanism through which acupuncture improves inflammation in COPD is the modulation of relevant signalling pathways: nuclear factor-κB (NF-κB) (e.g., myeloid differentiation primary response 88/NF-κB, toll-like receptor-4/NF-κB, silent information regulator transcript-1/NF-κB), mitogen-activated protein kinase signalling pathways (extracellular signal-regulated kinase 1/2, p38 and c-Jun NH2-terminal kinase), cholinergic anti-inflammatory pathway, and dopamine D2 receptor pathway. The current synthesis will be beneficial for further research on the effect of acupuncture on COPD inflammation. Please cite this article as: Jiang LH, Li PJ, Wang YQ, Jiang ML, Han XY, Bao YD, Deng XL, Wu WB, Liu XD. Anti-inflammatory effects of acupuncture in the treatment of chronic obstructive pulmonary disease. J Integr Med. 2023; 21(6): 518-527.
Animals
;
NF-kappa B/metabolism*
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Acupuncture Therapy
;
Cytokines
;
Disease Models, Animal
;
Inflammation/therapy*
8.LncRNA DRAIC regulates the proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells by targeting let-7i-5p.
Bao Lin LIU ; Yi Shuang CUI ; Ya Ping TIAN ; Ying Ze ZHU ; Zi Qian HONG ; Xue Mei ZHANG ; Guo Gui SUN
Chinese Journal of Oncology 2023;45(6):471-481
Objective: To investigate the effects of lncRNA DRAIC on proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells and its mechanism. Methods: Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of DRAIC in lung cancer tissues and corresponding adjacent normal tissues of 40 patients with lung adenocarcinoma who underwent surgery in Tangshan People's Hospital from 2019 to 2020. Lung adenocarcinoma cells A549 and H1299 were cultured in vitro and divided into si-NC group, si-DRAIC group, miR-NC group, let-7i-5p mimics group, si-DRAIC+ inhibitor-NC group, and si-DRAIC+ let-7i-5p inhibitor group. CCK-8 method and clone formation experiment were used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Transwell array was used to detect the cell migration and invasion. Western blot was used to detect the protein expressions of Caspase-3, Caspase-9, Bcl-2 and Bax. The double luciferase reporter gene experiment was used to verify the regulatory relationship between DRAIC and let-7i-5p. Independent sample t test was used for comparison between two groups, one-way ANOVA was used for comparison between multiple groups, and Pearson correlation analysis was used for correlation analysis. Results: Compared with adjacent tissues, the expression level of DRAIC in lung adenocarcinoma tissues increased (P<0.05), but the expression level of let-7i-5p decreased (P<0.05). The expression levels of DRAIC and let-7i-5p in lung adenocarcinoma tissues were negatively correlated (r=-0.737, P<0.05). The absorbance value of A549 and H1299 cells in the si-DRAIC group at 48, 72 and 96 hours were lower than those in the si-NC group (P<0.05), the number of clones formed [(91.00±6.08 vs. 136.67±6.51); (50.67±1.53 vs. 76.67±4.51)], the number of migration [(606.67±31.34 vs. 960.00±33.06); (483.33±45.96 vs. 741.67±29.67)], the number of invasion [(185.00±8.19 vs. 447.33±22.05); (365.00±33.87 vs. 688.00±32.97)] were lower than those in the si-NC group (P<0.05). However, the apoptosis rates of cells [(13.43±2.79)% vs. (4.53±0.42)%; (23.77±1.04)% vs. (6.60±1.42)%] were higher than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC group were higher than those in si-NC group, and the protein expression of Bcl-2 was lower than that in si-NC group (P<0.05). DRAIC is located in the cytoplasm. DRAIC targeted and negatively regulated the expression of let-7i-5p. The absorbance values of A549 and H1299 cells in the let-7i-5p mimics group at 48, 72 and 96 hours were lower than those in the miR-NC group (P<0.05), the number of clones formed [(131.33±14.47 vs. 171.33±6.11); (59.33±4.93 vs. 80.33±7.09)], the number of migration [(137.67±3.06 vs. 579.33±82.03); (425.00±11.14 vs. 669.33±21.13)], the number of invasion [(54.00±4.36 vs. 112.67±11.59); (80.00±4.58 vs. 333.33±16.80)] were lower than those in the miR-NC group (P<0.05). However, the apoptosis rates of cells [(14.57±1.10)% vs. (6.97±1.11)%; (23.97±0.42)% vs. (7.07±1.21)%] were higher than those in the miR-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in let-7i-5p mimics group were higher than those in miR-NC group, and the protein expression of Bcl-2 was lower than that in miR-NC group (P<0.05). The absorbance values of A549 and H1299 cells in the si-DRAIC+ let-7i-5p inhibitor group at 48, 72 and 96 hours were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05), the number of clones formed [(82.00±5.29 vs. 59.00±5.57); (77.67±4.93 vs. 41.33±7.57)], the number of migration [(774.33±35.81 vs. 455.67±19.04); (569.67±18.72 vs. 433.67±16.77)], the number of invasion [(670.33±17.21 vs. 451.00±17.52); (263.67±3.06 vs. 182.33±11.93)] were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05). However, the apoptosis rates of cells [(7.73±0.45)% vs. (19.13±1.50)%; (8.00±0.53)% vs. (28.40±0.53)%] were lower than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC+ let-7i-5p inhibitor group were higher than those in si-DRAIC+ inhibitor-NC group, and the protein expression of Bcl-2 was lower than that in si-DRAIC+ inhibitor-NC group (P<0.05). Conclusion: DRAIC is highly expressed in lung adenocarcinoma, and DRAIC promotes the proliferation, migration and invasion of lung adenocarcinoma cells and inhibits apoptosis by targeting let-7i-5p.
Humans
;
Adenocarcinoma/genetics*
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Lung/metabolism*
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Long Noncoding/genetics*
9.Altered microRNA expression profiles of human spermatozoa in normal fertile men of different ages.
Ming-Jia ZHAO ; Yao-Nan ZHANG ; Yong-Ping ZHAO ; Xian-Bing CHEN ; Bao-Sheng HAN ; Ning DING ; Yi-Qun GU ; Shu-Song WANG ; Jing MA ; Mei-Ling LIU
Asian Journal of Andrology 2023;25(6):737-744
MicroRNAs (miRNAs) are mediators of the aging process. The purpose of this work was to analyze the miRNA expression profiles of spermatozoa from men of different ages with normal fertility. Twenty-seven donors were divided into three groups by age (Group A, n = 8, age: 20-30 years; Group B, n = 10, age: 31-40 years; and Group C, n = 9, age: 41-55 years) for high-throughput sequencing analysis. Samples from 65 individuals (22, 22, and 21 in Groups A, B, and C, respectively) were used for validation by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 2160 miRNAs were detected: 1223 were known, 937 were newly discovered and unnamed, of which 191 were expressed in all donors. A total of 7, 5, and 17 differentially expressed microRNAs (DEMs) were found in Group A vs B, Group B vs C, and Group A vs C comparisons, respectively. Twenty-two miRNAs were statistically correlated with age. Twelve miRNAs were identified as age-associated miRNAs, including hsa-miR-127-3p, mmu-miR-5100_L+2R-1, efu-miR-9226_L-2_1ss22GA, cgr-miR-1260_L+1, hsa-miR-652-3p_R+1, pal-miR-9993a-3p_L+2R-1, hsa-miR-7977_1ss6AG, hsa-miR-106b-3p_R-1, hsa-miR-186-5p, PC-3p-59611_111, hsa-miR-93-3p_R+1, and aeca-mir-8986a-p5_1ss1GA. There were 9165 target genes of age-associated miRNAs. Gene Ontology (GO) analysis of the target genes identified revealed enrichment of protein binding, membrane, cell cycle, and so on. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of age-related miRNAs for target genes revealed 139 enriched pathways, such as signaling pathways regulating stem cell pluripotency, metabolic pathways, and the Hippo signaling pathway. This suggests that miRNAs play a key role in male fertility changes with increasing age and provides new evidence for the study of the mechanism of age-related male fertility decline.
Humans
;
Male
;
Young Adult
;
Adult
;
Middle Aged
;
MicroRNAs/genetics*
;
Signal Transduction/genetics*
;
Spermatozoa/metabolism*
;
Gene Expression Profiling
10.Therapeutic efficacy of volume-guaranteed high frequency oscillation ventilation on respiratory failure in preterm infants with a gestational age of 28-34 weeks: a prospective randomized controlled study.
Lu-Chun WANG ; Zhi-Dan BAO ; Yi-Zhe MA ; Li-Mei NIU ; Ming-Yan TAO
Chinese Journal of Contemporary Pediatrics 2023;25(11):1101-1106
OBJECTIVES:
To investigate the therapeutic efficacy of volume-guaranteed high frequency oscillation ventilation (HFOV-VG) versus conventional mechanical ventilation (CMV) in the treatment of preterm infants with respiratory failure.
METHODS:
A prospective study was conducted on 112 preterm infants with respiratory failure (a gestational age of 28-34 weeks) who were admitted to the Department of Neonatology, Jiangyin Hospital Affiliated to Medical School of Southeast University, from October 2018 to December 2022. The infants were randomly divided into an HFOV-VG group (44 infants) and a CMV group (68 infants) using the coin tossing method based on the mode of mechanical ventilation. The therapeutic efficacy was compared between the two groups.
RESULTS:
After 24 hours of treatment, both the HFOV-VG and CMV groups showed significant improvements in arterial blood pH, partial pressure of oxygen, partial pressure of carbon dioxide, and partial pressure of oxygen/fractional concentration of inspired oxygen ratio (P<0.05), and the HFOV-VG group had better improvements than the CMV group (P<0.05). There were no significant differences between the two groups in the incidence rate of complications, 28-day mortality rate, and length of hospital stay (P>0.05), but the HFOV-VG group had a significantly shorter duration of invasive mechanical ventilation than the CMV group (P<0.05). The follow-up at the corrected age of 6 months showed that there were no significant differences between the two groups in the scores of developmental quotient, gross motor function, fine motor function, adaptive ability, language, and social behavior in the Pediatric Neuropsychological Development Scale (P>0.05).
CONCLUSIONS
Compared with CMV mode, HFOV-VG mode improves partial pressure of oxygen and promotes carbon dioxide elimination, thereby enhancing oxygenation and shortening the duration of mechanical ventilation in preterm infants with respiratory failure, while it has no significant impact on short-term neurobehavioral development in these infants.
Infant
;
Child
;
Infant, Newborn
;
Humans
;
Infant, Premature
;
Prospective Studies
;
Gestational Age
;
Carbon Dioxide
;
Respiratory Distress Syndrome, Newborn/therapy*
;
High-Frequency Ventilation/methods*
;
Respiration, Artificial
;
Respiratory Insufficiency/therapy*
;
Oxygen
;
Cytomegalovirus Infections

Result Analysis
Print
Save
E-mail